On the Need for Provably Secure Distance Bounding

Serge Vaudenay

http://lasec.epfl.ch/

EASEC

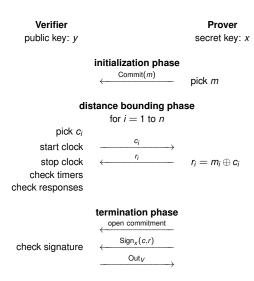
distance bounding

- **2** Some Insecurity Case Studies
- **3** On Incorrect Use of PRFs
- Directions for Provable Security

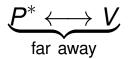
Introduction to Distance-Bounding

- 2 Some Insecurity Case Studies
- On Incorrect Use of PRFs
- Oirections for Provable Security

Motivation


for token-based authentication: thwart man-in-the-middle

- wireless car locks
- creditcard payment (or contactless)
- corporate ID card for access control


solution: use a distance-bounding protocol

The Brands-Chaum Protocol

Distance-Bounding Protocols [Brands-Chaum EUROCRYPT 1993]

Distance Fraud

a malicious prover P^* tries to prove that he is close to a verifier V

Mafia Fraud

Major Security Problems with the "Unforgeable" (Feige)-Fiat-Shamir Proofs of Identity and How to Overcome Them [Desmedt SECURICOM 1988]

$$\underbrace{P \longleftrightarrow \mathcal{A} \longleftrightarrow V}_{\text{far away}}$$

an adversary \mathcal{A} tries to prove that a prover P is close to a verifier V

Terrorist Fraud

Major Security Problems with the "Unforgeable" (Feige)-Fiat-Shamir Proofs of Identity and How to Overcome Them [Desmedt SECURICOM 1988]

$$\underbrace{P^* \longleftrightarrow \mathcal{A} \longleftrightarrow V}_{\text{far away}}$$

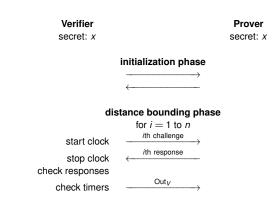
a malicious prover P^* helps an adversary \mathcal{A} to prove that P^* is close to a verifier V without giving \mathcal{A} another advantage

Impersonation Fraud

A Formal Approach to Distance Bounding RFID Protocols [Dürholz-Fischlin-Kasper-Onete ISC 2011]

$\mathcal{A} \longleftrightarrow V$

an adversary \mathcal{A} tries to prove that a prover P is close to a verifier V


Distance Hijacking

Distance Hijacking Attacks on Distance Bounding Protocols [Cremers-Rasmussen-Čapkun IEEE S&P 2012]

$$\underbrace{P^* \longleftrightarrow P' \longleftrightarrow V}_{\text{far away}}$$

a malicious prover P^* tries to prove that he is close to a verifier V by taking advantage of other provers P'

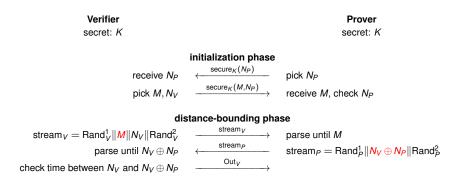
Techniques

caveat: the rapid bit-exchange is subject to noise, so the verifier may require at least τ correct sessions to accept

- 2 Some Insecurity Case Studies
- On Incorrect Use of PRFs
- Oirections for Provable Security

2 Some Insecurity Case Studies

The RC Protocol


• The Bussard-Bagga Protocol and Children

The RC Protocol

Location Privacy of Distance Bounding [Rassmussen-Čapkun ACM CCS 2008]

- integrate location-privacy
- based on the exchange of a continuous bitstream

The RC Protocol

Attack Principles

Mafia Fraud Attack against the RC Distance-Bounding Protocol [Mitrokotsa-Vaudenay IEEE RFID-TA 2012]

- the adversary intercepts a complete session between P and V
- the adversary guesses the position of N_V in stream_V
- assume the adversary knows the locations of *P* and *V* he can deduce the position of N_V ⊕ N_P, thus the value of N_P
- the adversary can now impersonate P by replaying secure_K(N_P)
- he replies by stream $_V \oplus (\text{offset} || N_P || \cdots || N_P)$
- if the offset length modulo $|N_V|$ is correct, the verifier accepts

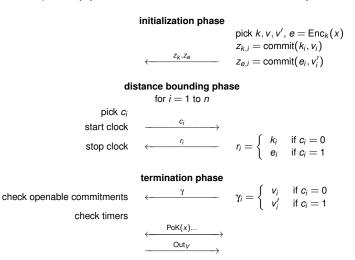
• success probability:
$$\frac{1}{|\text{stream}_V|} \times \frac{1}{|N_V|}$$

The RC Protocol

The Bussard-Bagga Protocol and Children

The BB Protocol

Distance-Bounding Proof of Knowledge Protocols to Avoid Real-Time Attacks [Bussard-Bagga IFIP SEC 2005]

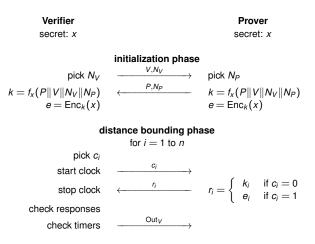

- protection against terrorist fraud
- based on public-key cryptography
- generic: several DBPK possible instantiations

The Generic DBPK Protocol

Verifier

public key: v

Prover secret key: x



Proposed Instances

- one-time pad DBPK: $Enc_k(x) = x \oplus k$
- addition modulo q DBPK-Log: $Enc_k(x) = x k \mod q$
- modular addition with random factor DBPK-Log: Enc_k(x; u) = ($u, ux - k \mod q$)

The Reid et al. Protocol

Detecting Relay Attacks with Timing-based Protocols [Reid-Nieto-Tang-Senadji ASIACCS 2007]

Attack Principles for the Reid et al. Protocol

The Swiss-Knife RFID Distance Bounding Protocol [Kim-Avoine-Koeune-Standaert-Pereira ICISC 2008]

- select i
- let a protocol run between *P* and *V* except replace c_i by $1 c_i$ and r_i by bit $\in_U \{0, 1\}$
- observation 1: the response to $1 c_i$ is r_i (given by P)
- observation 2: the response to c_i is bit ⊕ 1<sub>V does not accept
 </sub>
- the adversary deduces k_i and e_i , thus $x_i = k_i \oplus e_i$
- iterate with another *i* and reconstruct the secret *x*
- the adversary can impersonate P to V!

Attack Principles for One-Time Pad DBPK

The Bussard-Bagga and Other Distance-Bounding Protocols under Man-in-the-Middle Attacks [Bay-Boureanu-Mitrokotsa-Spulber-Vaudenay Inscrypt 2012]

- select i
- let a protocol run between *P* and *V* except replace *c_i* by 1 − *c_i* and *r_i* by *r_i^{*}* ∈ *U* {0,1}
 !! tricky things with PoK and commitments (requires to guess *c_i*)
- observation 1: the response to $1 c_i$ is r_i (given by P)
- observation 2: the response to c_i is $r_i^* \oplus 1_V$ does not accept
- the adversary deduces k_i and e_i , thus $x_i = k_i \oplus e_i$
- iterate with another *i* and reconstruct the secret *x*
- the adversary can impersonate P to V!

Attack Principles for Other Instances

The Bussard-Bagga and Other Distance-Bounding Protocols under Man-in-the-Middle Attacks [Bay-Boureanu-Mitrokotsa-Spulber-Vaudenay Inscrypt 2012]

for addition modulo q DBPK-Log:

- guess the most significant bit *x_n* of *x*
- set $c_n = 0$, get r_n from P and deduce k_n
- if $x_n = k_n$, start again until $x_n \neq k_n$
- since $e = x k + k_n q$, we deduce some relations *B*

$$x_i = B_i(e_i \oplus k_i, e \mod 2^{i-1}, k \mod 2^{i-1})$$

• apply the previous attack with i = 1, 2, ...

for addition with random factor DBPK-Log:

• more complicated (involves lattice reduction techniques)

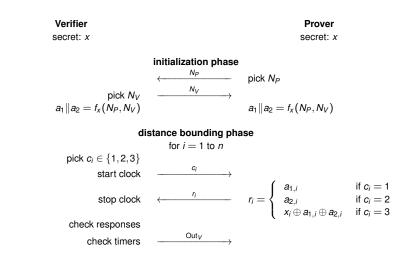
Terrorist Fraud Attacks for Stronger Encryption

Distance-Bounding for RFID: Effectiveness of 'Terrorist Fraud' in the Presence of Bit Errors [Hancke IEEE RFID-TA 2012]

- P^* helps \mathcal{A} for the initialization phase
- P^* provides \mathcal{A} with all (k_i, e_i) pairs with $n \tau$ of them flipped
- $\bullet \ \mathcal{A}$ answers to challenges using these pairs
- P^* helps \mathcal{A} for the termination phase
- since there are τ correct responses, V accepts
- \mathcal{A} cannot reconstruct x based on the noisy (k_i, e_i) pairs
- caveat: previous argument does not apply to "simple" encryptions such as one-time-pad and other variants

- 2 Some Insecurity Case Studies
- **3** On Incorrect Use of PRFs
- Directions for Provable Security

Security Proofs Based on PRF


- if the adversary can break the scheme with a PRF, then he can break an idealized scheme with the PRF replaced by a truly random function
- this argument is valid when both these conditions are met:

the adversary does not have access to the PRF key

- the PRF key is only used by the PRF
- as far as distance fraud is concerned, condition 1 is not met!
- for most of terrorist fraud protections, condition 2 is not met!

The TDB Protocol

How Secret-Sharing can Defeat Terrorist Fraud [Avoine-Lauradoux-Martin ACM WiSec 2011]

Distance Fraud with a Programmed PRF

On the Pseudorandom Function Assumption in (Secure) Distance-Bounding Protocols [Boureanu-Mitrokotsa-Vaudenay Latincrypt 2012]

• given a PRF g, let

$$f_x(N_P,N_V) = \left\{ egin{array}{cc} x \| x & ext{if } N_P = x \ g_x(N_P,N_V) & ext{otherwise} \end{array}
ight.$$

f is a PRF!

- a malicious prover selects $N_P = x$ to make $a_1 = a_2 = x$
- whatever c_i , we have $r_i = x_i$
- the malicious prover can send *r_i* before receiving *c_i*!

Man-in-the-Middle Attack with a Programmed PRF

On the Pseudorandom Function Assumption in (Secure) Distance-Bounding Protocols [Boureanu-Mitrokotsa-Vaudenay Latincrypt 2012]

• given a PRF g: trapdoor_x($\bar{\alpha} || t$) \iff $t = g_x(\bar{\alpha}) \oplus$ right_half(x),

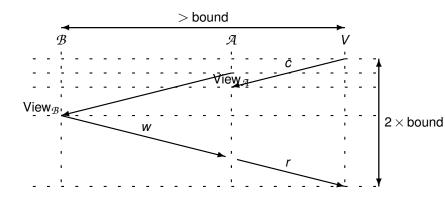
$$f_{x}(N_{P},N_{V}) = \begin{cases} (a_{1} = \alpha \|\beta, a_{2} = \gamma \|\beta \oplus g_{x}(\alpha)) & \text{if } \neg \text{trapdoor}_{x}(N_{V}) \\ & \text{where } (\alpha,\beta,\gamma) = g_{x}(N_{P},N_{V}) \\ a_{1} = a_{2} = x & \text{otherwise} \end{cases}$$

f is a PRF!

- the adversary plays with *P* and sends *c* = (1,...,1,3,...,3) to obtain from the responses left_half(*a*₁) = α
 and right_half(*x* ⊕ *a*₁ ⊕ *a*₂) = *g_x*(α
) ⊕ right_half(*x*) = *t*
- so, he can form $N_V = \bar{\alpha} || t$ satisfying trapdoor_x(N_V)
- the adversary plays with P again with the lastly constructed N_V and gets r = x
- the adversary can now impersonate P to V!

Other Results based on Programmed PRFs

On the Pseudorandom Function Assumption in (Secure) Distance-Bounding Protocols [Boureanu-Mitrokotsa-Vaudenay Latincrypt 2012]


protocol	distance fraud	man-in-the-middle attack
TDB Avoine-Lauradoux-Martin	\checkmark	\checkmark
[ACM WiSec 2011]		
Dürholz-Fischlin-Kasper-Onete [ISC 2011]	\checkmark	-
Hancke-Kuhn [Securecomm 2005]	\checkmark	-
Avoine-Tchamkerten [ISC 2009]	\checkmark	-
Reid-Nieto-Tang-Senadji [ASIACCS 2007]	\checkmark	\checkmark
Swiss-Knife Kim-Avoine-Koeune-Standaert-	-	\checkmark
Pereira [ICISC 2008]		

- Introduction to Distance-Bounding
- 2 Some Insecurity Case Studies
- **3** On Incorrect Use of PRFs
- Directions for Provable Security

Problem 1: Integrate Time in the Communication Model

- all communication are subject to a transmission speed limit!
- information is broadcast, local on a growing sphere
- adversary is also local (maybe several adversaries)
- adversary can impersonate and change the message destination
- honest people only see messages for which they are destinator
- all communication is subject to random noise with caveat:
 - adversary sees message with no noise (better equipment)
 - if time allows, honest participants see message with no noise (error correction)

Lemma

If the \mathcal{B} -*V* distance is larger than bound but the response *r* to *c* is received within at most 2.bound time, then *r* is a function of View_{\mathcal{R}}, *c*, and *w*, where *w* is a function from View_{\mathcal{B}}, independent from *c*.

Problem 2: Find a General Threat Model

distance fraud:

- P(x) far from all V(x)'s want to make one V(x) accept (interaction with other P(x') and V(x') possible anywhere)
- ullet ightarrow also captures distance hijacking

man-in-the-middle:

- learning phase: \mathcal{A} interacts with many P's and V's
- attack phase: P(x)'s far away from V(x)'s, A interacts with them and possible P(x')'s and V(x')'s A wants to make one V(x) accept
- ullet \to also captures impersonation

collusion fraud:

P(x) far from all V(x)'s interacts with A and makes one V(x) accept, but View(A) does not give any advantage to mount a man-in-the-middle attack

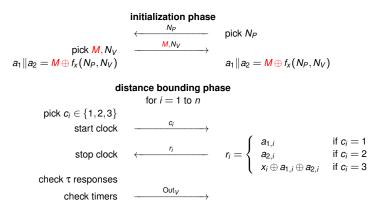
Problem 3: Crypto Assumptions to Make Proofs Correct

• PRF masking:

a string is chosen by the verifier and sent encrypted using the PRF

$$a = M \oplus \mathsf{PRF}_x(\cdots)$$

• circular keying:


if \mathcal{A} makes a query (y_i, a_i, b_i) , the oracle answers $(a_i \cdot x') + (b_i \cdot f_x(y_i))$ \mathcal{A} cannot distinguish if x = x' or x and x' are independent caveat: for all c_1, \ldots, c_q s.t. $c_1b_1 + \cdots + c_qb_q = 0$, we must have $c_1a_1 + \cdots + c_qa_q = 0$

The SKI Protocol

[Serge-Katerina-Ioana]

 Verifier
 Prover

 secret: x
 secret: x

f is a circular-keying secure PRF many variants possible

SV 2012

SKI Security

Theorem

If f is a circular-keying secure PRF and V requires at least τ correct rounds,

- there is no DF with $\Pr[\text{success}] \ge B(n, \tau, \frac{3}{4})$
- there is no MiM with $Pr[success] \ge B(n, \tau, \frac{2}{3})$
- for all CF such that Pr[CF succeeds] ≥ p there is an assosiated MiM such that
 Pr[MiM(View)) succeeds[CE succeeds] > p

 $\Pr[MiM(View_{\mathcal{A}}) \text{ succeeds} | CF \text{ succeeds}] \geq \frac{p}{(1+\sqrt{1-p})^2}$

$$B(n,\tau,\rho) = \sum_{i=\tau}^{n} {n \choose i} \rho^{i} (1-\rho)^{n-i}$$

Conclusion

- several proposed protocols from the literature are insecure
- several security proofs from the literature are incorrect
- SKI offers provable security