Privacy Preserving Protocols Workshop on Cryptography for the Internet of Things

Jens Hermans KU Leuven - COSIC

20 November 2012

Introduction

└─ Cryptography in Daily Life

RFID

└─ Cryptography in Daily Life

Car Keys

Cryptography in Daily Life

Access Control

Product Tracking

2 Privacy Models

Protocol Analysis Provable Security (Privacy) Privacy Model Insider Attacks Requirements

- 3 Lightweight Cryptography
- **4** Existing Protocols
- 5 Protocol Design Design
- 6 Conclusions and Future Perspectives

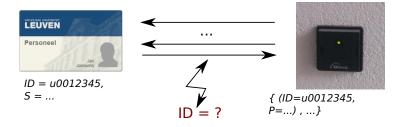
Why?

Industrial espionage

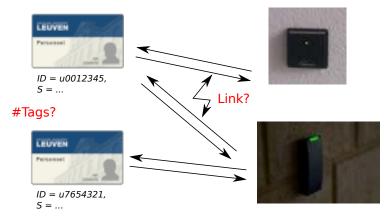
Why?

User privacy

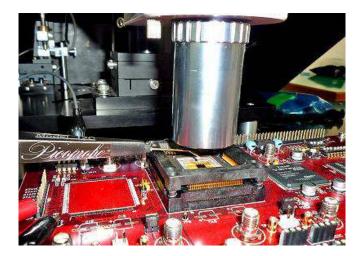
Why?


User privacy

Why?



Wireless Gun


RFID Privacy: goals

RFID Privacy: goals

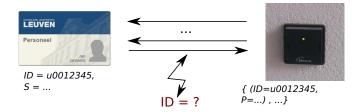
Corrupting Tags

Different Privacy Solutions

- Protocol Level Privacy
- Kill Command
- Destroy Tag
- Shielding
- (Read Range Reduction)
- **.**...

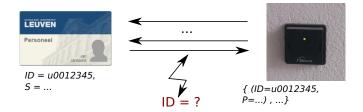
Threat Analysis / Requirements

		Privacy	
		Low	High
Security	Low	Supply Chain	Public Transport
S	High	Car Keys	Payments Access Control Passports


2 Privacy Models

Protocol Analysis Provable Security (Privacy) Privacy Model Insider Attacks Requirements

- 3 Lightweight Cryptography
- **4** Existing Protocols
- 6 Protocol Design Design Performance


Protocol Analysis

Properties:

- Security
- Privacy: untraceability
- Allow corruption

Protocol Analysis

Results

Many published protocols broken:

 \Rightarrow Lack of formal proofs!

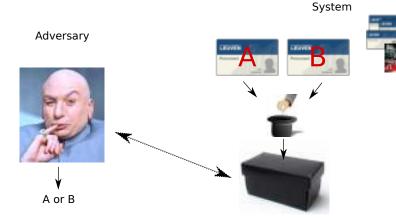
Provable Security (Privacy)

Provable Security (Privacy)

Provable Security (Privacy)

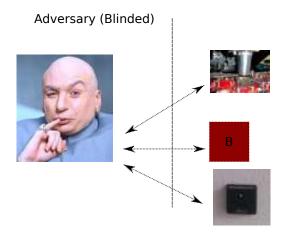
Provable Security (Privacy)

Adversary


System

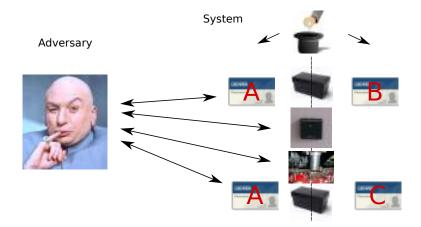
Adversary wins if ...

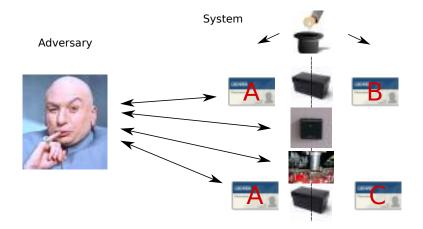
Privacy Preserving Protocols
Privacy Models
Privacy Model


Juels-Weis model (2005)

Adversary wins if output is correct tag.

Vaudenay model (2007)


System



Adversary wins if output is true and not trivial

Design goals:

- Strong adversary: can always corrupt
- Solve issues with wide strong privacy
- Model 'reality'
- Easy to use

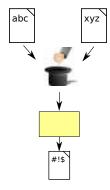
Adversary wins if random bit is guessed correctly.

New Features:

- corruption \rightarrow on *real* tag
- wide strong privacy

Features (reused):

- Virtual tag handles
- Indistinguishability based
- Single random bit for entire system



Indistinguishability

Encryption:

- RO
- IND-CPA
- IND-CCA
- IND-CCA2

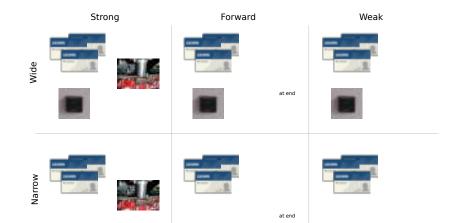
...

Privacy-models:

- Juels-Weis
- Vaudenay
- Hermans *et al.*

Indistinguishability

Encryption:


- RO
- IND-CPA
- IND-CCA
- IND-CCA2
- ...

Privacy-models:

- Juels-Weis
- Vaudenay
- Hermans et al.

Privacy Levels

Privacy Requirements

Privacy Level	Application
Narrow Weak	Supply Chain
Narrow Forward	Smart Products
Wide Weak	Car Keys
Wide Forward	Payments Access Tokens Passports Public Transport

Insider Attacks

System

Adversary

Insider Tag

— Requirements

Privacy Requirements

Privacy Level	Application
Narrow Weak	Supply Chain
Narrow Forward	Smart Products
Wide Weak	Car Keys
Wide Forward + Insider	Payments Access Tokens Passports Public Transport

— Requirements

Privacy Requirements

Privacy Level	Application
Narrow Weak	Supply Chain
Narrow Forward	Smart Products
Wide Weak	Car Keys
Wide Forward + Insider Currently: Wide Strong	Payments Access Tokens Passports Public Transport

1 RFID Privacy Requirement

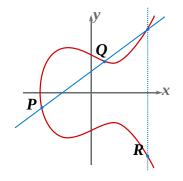
2 Privacy Models

Protocol Analysis Provable Security (Privacy) Privacy Model Insider Attacks Requirements

- 3 Lightweight Cryptography
- **4** Existing Protocols
- 5 Protocol Design Design
 - Performance
- 6 Conclusions and Future Perspectives

Lightweight Devices

Lightweight Cryptography?


Limits:

- Area (€€€)
- Time
- Power
- Energy

Typical Ingredients for Protocols

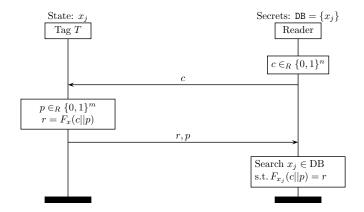
Primitive	Status	
RNG	OK?	
Key Update	???	
Block Cipher	OK	
Hash Function	OK	
ECC	OK	
\sum	???	

Lightweight Elliptic Curve Cryptography

Implementation [LBSV10]:

- Area (14.5 kGE)
- Time (85 ms)
- Power (13.8 µW)
- Energy (1.18 µ J)

RFID Privacy Requirement


2 Privacy Models

Protocol Analysis Provable Security (Privacy) Privacy Model Insider Attacks Requirements

- 3 Lightweight Cryptography
- **4** Existing Protocols
- 5 Protocol Design Design

PRF (Block cipher) based [ISO/IEC 9798-2]

Privacy Wide-Weak

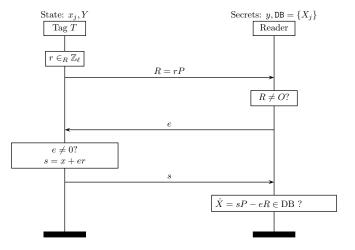
Symmetric Key and Efficiency

Damgård-Pedersen '08:

- Independent keys: inefficient O(n)
- Correlated keys:
 - efficient $O(\log(n))$
 - privacy loss

Symmetric Key and Efficiency

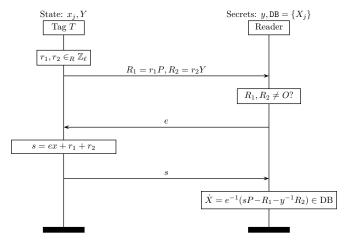
Damgård-Pedersen '08:


- Independent keys: inefficient O(n)
- Correlated keys:
 - efficient $O(\log(n))$
 - privacy loss

Key Updating

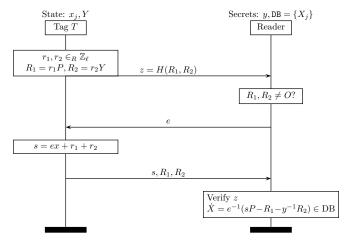
- Higher Privacy Level (narrow forward)
- Desynchronization Attacks / Efficiency Problems
- Implementation cost?

Privacy Preserving Protocols


EC Schnorr Protocol

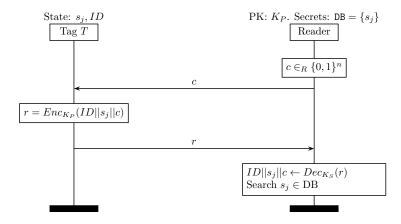
Privacy

None


Randomized Schnorr [BCI08]

Privacy

Narrow Strong


Randomized Hash GPS [BCI09]

Privacy

Narrow Strong and Wide Forward

IND-CCA2 Encryption [Vau07]

Privacy Wide Strong

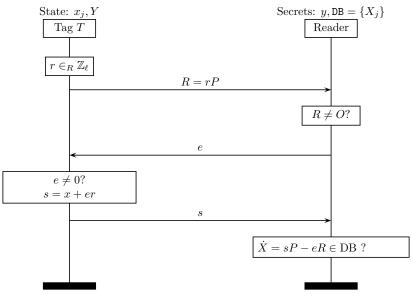
Protocol	Privacy	Ins.	Ext. Snd.	Operations
Schnorr	no	no	yes	1 EC mult
Randomized Schnorr	narrow-strong	no	yes	2 EC mult
Rand. Hashed GPS	narrow-strong wide-forward	no	yes	2 EC mult 1 hash

Protocol	Privacy	Ins.	Ext. Snd.	Operations
Schnorr	no	no	yes	1 EC mult
Randomized Schnorr	narrow-strong	no	yes	2 EC mult
Rand. Hashed GPS	narrow-strong wide-forward	no	yes	2 EC mult 1 hash
Vaudenay + DHIES	wide-strong	yes	no	2 EC mult 1 hash 1 MAC 1 symm enc
Hash ElGamal	wide-strong	yes	no	2 EC mult 1 hash 1 MAC

2 Privacy Models

Protocol Analysis Provable Security (Privacy) Privacy Model Insider Attacks Requirements

- 3 Lightweight Cryptography
- **4** Existing Protocols
- S Protocol Design Design Performance


New Protocol [Peeters, Hermans 2012]

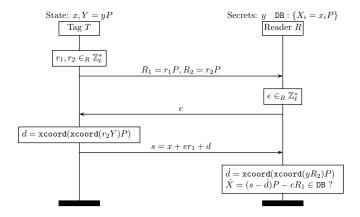
Design protocol:

- Correct
- Extended soundness
- (At least) Wide Forward + Insider privacy
- Efficient

Privacy Preserving Protocols

EC Schnorr Protocol

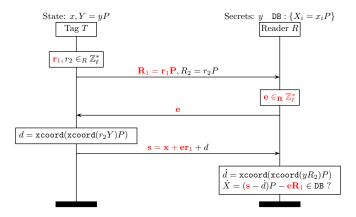
Oracle Diffie-Hellman Assumption


$$(A = aP, B = bP, abP) \sim (A = aP, B = bP, rP)$$

with extra $\mathcal{O}(Z) := \operatorname{xcoord}(bZ)P$.

X Logarithm

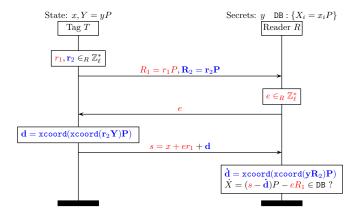
 $xcoord(rP)P \sim r'P$


```
Privacy Preserving Protocols
```

New Protocol

Privacy Preserving Protocols

New Protocol - Extended Soundness



Extended Soundness

Schnorr protocol \Rightarrow extended soundness (OMDL assumption)

Privacy Preserving Protocols

New Protocol - Privacy

Performance

Protocol	Privacy	Ins.	Ext. Snd.	Operations
Schnorr	no	no	yes	1 EC mult
Randomized Schnorr	narrow-strong	no	yes	2 EC mult
Rand. Hashed GPS	narrow-strong wide-forward	no	yes	2 EC mult <mark>1 hash</mark>
Vaudenay + DHIES	wide-strong	yes	no	2 EC mult 1 hash 1 MAC 1 symm enc
Hash ElGamal	wide-strong	yes	no	2 EC mult 1 hash 1 MAC

Performance

Protocol	Privacy	Ins.	Ext. Snd.	Operations
Schnorr	no	no	yes	1 EC mult
Randomized Schnorr	narrow-strong	no	yes	2 EC mult
Rand. Hashed GPS	narrow-strong wide-forward	no	yes	2 EC mult 1 hash
Vaudenay + DHIES	wide-strong	yes	no	2 EC mult 1 hash 1 MAC 1 symm enc
Hash ElGamal	wide-strong	yes	no	2 EC mult 1 hash 1 MAC
Our Protocol - optimised version	wide-forward-insider wide-forward-insider	yes yes	yes yes	4 EC mult 2 EC mult

Summary

- Overview RFID Privacy Models & Privacy Levels
- Implementation Aspects
- RFID Protocols
- New Private & Efficient RFID Protocol

Future Perspectives

Privacy models

- 'Fair' comparison
- Restrictions on tag corruption
- Simulatability vs indistinguishability

Protocols

- New applications
- Other primitives \rightarrow feasible?
- Analyze underlying assumptions (DDH-variants)

Privacy Preserving Protocols Conclusions and Future Perspectives

?