Factorization: state of the art

1. Batch NFS
2. Factoring into coprimes
3. ECM

D. J. Bernstein
University of Illinois at Chicago

Tanja Lange
Technische Universiteit Eindhoven
Sieving small integers $i > 0$ using primes 2, 3, 5, 7:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>16</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>17</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>18</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>19</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>20</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

etc.
Sieving i and $611 + i$ for small i using primes 2, 3, 5, 7:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>22</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>222</td>
<td>33</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>22</td>
<td>3</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>15</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>16</td>
<td>2222</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>2</td>
<td>33</td>
</tr>
<tr>
<td>19</td>
<td>2</td>
<td>33</td>
</tr>
<tr>
<td>20</td>
<td>22</td>
<td>5</td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>612</td>
<td>22</td>
<td>33</td>
</tr>
<tr>
<td>613</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>614</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>615</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>616</td>
<td>222</td>
<td>7</td>
</tr>
<tr>
<td>617</td>
<td></td>
<td></td>
</tr>
<tr>
<td>618</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>619</td>
<td></td>
<td></td>
</tr>
<tr>
<td>620</td>
<td>22</td>
<td>5</td>
</tr>
<tr>
<td>621</td>
<td>333</td>
<td></td>
</tr>
<tr>
<td>622</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>623</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>624</td>
<td>2223</td>
<td></td>
</tr>
<tr>
<td>625</td>
<td>5555</td>
<td></td>
</tr>
<tr>
<td>626</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>627</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>628</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>629</td>
<td></td>
<td></td>
</tr>
<tr>
<td>630</td>
<td>2335</td>
<td>7</td>
</tr>
<tr>
<td>631</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

etc.
Have complete factorization of the “congruences” \(i(611 + i) \) for some \(i \)'s.

\[
14 \cdot 625 = 2^1 3^0 5^4 7^1 .
\]

\[
64 \cdot 675 = 2^6 3^3 5^2 7^0 .
\]

\[
75 \cdot 686 = 2^1 3^1 5^2 7^3 .
\]

\[
14 \cdot 64 \cdot 75 \cdot 625 \cdot 675 \cdot 686 = 2^8 3^4 5^8 7^4 = (2^4 3^2 5^4 7^2)^2 .
\]

\[
gcd\{611, 14 \cdot 64 \cdot 75 - 2^4 3^2 5^4 7^2\} = 47 .
\]

\[
611 = 47 \cdot 13 .
\]
Why did this find a factor of 611? Was it just blind luck: \(\gcd\{611, \text{random}\} = 47 \)?

No.

By construction 611 divides \(s^2 - t^2 \) where \(s = 14 \cdot 64 \cdot 75 \) and \(t = 2^4 3^2 5^4 7^2 \).

So each prime \(> 7 \) dividing 611 divides either \(s - t \) or \(s + t \).

Not terribly surprising (but not guaranteed in advance!) that one prime divided \(s - t \) and the other divided \(s + t \).
Why did the first three completely factored congruences have square product? Was it just blind luck?

Yes. The exponent vectors $(1, 0, 4, 1), (6, 3, 2, 0), (1, 1, 2, 3)$ happened to have sum 0 mod 2.

But we didn’t need this luck! Given long sequence of vectors, easily find nonempty subsequence with sum 0 mod 2.
This is linear algebra over \mathbb{F}_2. Guaranteed to find subsequence if number of vectors exceeds length of each vector.

e.g. for $n = 671$:
- $1(n + 1) = 2^{5}3^{1}5^{0}7^{1}$;
- $4(n + 4) = 2^{2}3^{3}5^{2}7^{0}$;
- $15(n + 15) = 2^{1}3^{1}5^{1}7^{3}$;
- $49(n + 49) = 2^{4}3^{2}5^{1}7^{2}$;
- $64(n + 64) = 2^{6}3^{1}5^{1}7^{2}$.

\mathbb{F}_2-kernel of exponent matrix is gen by $(0\ 1\ 0\ 1\ 1)$ and $(1\ 0\ 1\ 1\ 0)$; e.g., $1(n + 1)15(n + 15)49(n + 49)$ is a square.
Plausible conjecture: \(Q \) sieve can separate the odd prime divisors of any \(n \), not just 611.

Given \(n \) and parameter \(y \):

Try to completely factor \(i(n + i) \) for \(i \in \{1, 2, 3, \ldots, y^2\} \) into products of primes \(\leq y \).

Look for nonempty set of \(i \)'s with \(i(n + i) \) completely factored and with \(\prod_i i(n + i) \) square.

Compute \(\gcd\{n, s - t\} \) where \(s = \prod_i i \) and \(t = \sqrt{\prod_i i(n + i)} \).
How large does y have to be for this to find a square?

Uniform random integer in $[1, n]$ has $n^{1/u}$-smoothness chance roughly u^{-u}.

Plausible conjecture:

Q sieve succeeds with $y = \lfloor n^{1/u} \rfloor$

for all $n \geq u^{(1+o(1))u^2}$;

here $o(1)$ is as $u \to \infty$.
More generally, if $y \in \exp \sqrt{(\frac{1}{2c} + o(1)) \log n \log \log \log n}$, conjectured y-smoothness chance is $1/y^{c+o(1)}$.

Find enough smooth congruences by changing the range of i’s: replace y^2 with $y^{c+1+o(1)} = \exp \sqrt{\left(\frac{(c+1)^2 + o(1)}{2c} \right) \log n \log \log \log n}$.

Increasing c past 1 increases number of i’s but reduces linear-algebra cost. So linear algebra never dominates when y is chosen properly.
Improving smoothness chances

Smoothness chance of \(i(n + i) \) degrades as \(i \) grows.
Smaller for \(i \approx y^2 \) than for \(i \approx y \).

Crude analysis: \(i(n + i) \) grows.
\(\approx yn \) if \(i \approx y \);
\(\approx y^2n \) if \(i \approx y^2 \).

More careful analysis:
\(n + i \) doesn’t degrade, but
\(i \) is always smooth for \(i \leq y \),
only 30% chance for \(i \approx y^2 \).

Can we select congruences to avoid this degradation?
Choose \(q \), square of large prime. Choose a “\(q \)-sublattice” of \(i \)'s: arithmetic progression of \(i \)'s where \(q \) divides each \(i(n + i) \).
e.g. progression \(q - (n \mod q) \),
\(2q - (n \mod q) \), \(3q - (n \mod q) \), etc.

Check smoothness of generalized congruence \(i(n + i)/q \)
for \(i \)'s in this sublattice.
e.g. check whether \(i, (n+i)/q \) are smooth for \(i = q - (n \mod q) \) etc.

Try many large \(q \)'s.
Rare for \(i \)'s to overlap.
e.g. \(n = 314159265358979323 \):

Original \(\mathbb{Q} \) sieve:

<table>
<thead>
<tr>
<th>(i)</th>
<th>(n + i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>314159265358979324</td>
</tr>
<tr>
<td>2</td>
<td>314159265358979325</td>
</tr>
<tr>
<td>3</td>
<td>314159265358979326</td>
</tr>
</tbody>
</table>

Use \(997^2 \)-sublattice,

\(i \in 802458 + 994009\mathbb{Z} \):

<table>
<thead>
<tr>
<th>(i)</th>
<th>((n + i)/997^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>802458</td>
<td>316052737309</td>
</tr>
<tr>
<td>1796467</td>
<td>316052737310</td>
</tr>
<tr>
<td>2790476</td>
<td>316052737311</td>
</tr>
</tbody>
</table>
Crude analysis: Sublattices eliminate the growth problem. Have practically unlimited supply of generalized congruences
\[(q - (n \mod q)) \frac{n + q - (n \mod q)}{q}
\] between 0 and \(n\).

More careful analysis: Sublattices are even better than that! For \(q \approx n^{1/2}\) have
\[i \approx (n + i)/q \approx n^{1/2} \approx y^{u/2}
\] so smoothness chance is roughly
\[(u/2)^{-u/2}(u/2)^{-u/2} = 2^u / u^u,
\] \(2^u\) times larger than before.
Even larger improvements from changing polynomial $i(n+i)$.

“Quadratic sieve” (QS) uses $i^2 - n$ with $i \approx \sqrt{n}$; have $i^2 - n \approx n^{1/2 + o(1)}$, much smaller than n.

“MPQS” improves $o(1)$ using sublattices: $(i^2 - n)/q$. But still $\approx n^{1/2}$.

“Number-field sieve” (NFS) achieves $n^{o(1)}$.
Generalizing beyond \mathbb{Q}

The \mathbb{Q} sieve is a special case of the number-field sieve.

Recall how the \mathbb{Q} sieve factors 611:

Form a square as product of $i(i + 611j)$ for several pairs (i, j):

$14(625) \cdot 64(675) \cdot 75(686)$

$= 4410000^2$.

$\gcd\{611, 14 \cdot 64 \cdot 75 - 4410000\}$

$= 47$.
The $Q(\sqrt{14})$ sieve factors 611 as follows:

Form a square as product of $(i + 25j)(i + \sqrt{14}j)$ for several pairs (i, j):

$(-11 + 3 \cdot 25)(-11 + 3\sqrt{14}) \cdot (3 + 25)(3 + \sqrt{14}) = (112 - 16\sqrt{14})^2$.

Compute

$s = (-11 + 3 \cdot 25) \cdot (3 + 25)$,
$t = 112 - 16 \cdot 25$,
$\gcd\{611, s - t\} = 13$.
Why does this work?

Answer: Have ring morphism \(\mathbb{Z}[\sqrt{14}] \to \mathbb{Z}/611, \sqrt{14} \mapsto 25 \), since \(25^2 = 14 \) in \(\mathbb{Z}/611 \).

Apply ring morphism to square:
\[
(-11 + 3 \cdot 25)(-11 + 3 \cdot 25) \cdot (3 + 25)(3 + 25) = (112 - 16 \cdot 25)^2 \text{ in } \mathbb{Z}/611.
\]
i.e. \(s^2 = t^2 \) in \(\mathbb{Z}/611 \).

Unsurprising to find factor.
Generalize from \((x^2 - 14, 25)\) to \((f, m)\) with irred \(f \in \mathbb{Z}[x]\), \(m \in \mathbb{Z}\), \(f(m) \in n\mathbb{Z}\).

Write \(d = \deg f\),
\[
f = f_d x^d + \cdots + f_1 x^1 + f_0 x^0.
\]
Can take \(f_d = 1\) for simplicity, but larger \(f_d\) allows better parameter selection.

Pick \(\alpha \in \mathbb{C}\), root of \(f\).
Then \(f_d \alpha\) is a root of monic \(g = f_d^{d-1} f(x/f_d) \in \mathbb{Z}[x]\).

\[
\mathbb{Q}(\alpha) \leftarrow \mathcal{O} \leftarrow \mathbb{Z}[f_d \alpha] \xrightarrow{f_d \alpha \mapsto f_d m} \mathbb{Z}/n
\]
Build square in $\mathbb{Q}(\alpha)$ from congruences $(i - jm)(i - j\alpha)$ with $i\mathbb{Z} + j\mathbb{Z} = \mathbb{Z}$ and $j > 0$.

Could replace $i - jx$ by higher-deg irred in $\mathbb{Z}[x]$; quadratics seem fairly small for some number fields. But let’s not bother.

Say we have a square

$$\prod_{(i,j) \in S} (i - jm)(i - j\alpha)$$

in $\mathbb{Q}(\alpha)$; now what?
\prod(i - jm)(i - j\alpha)f_d^2

is a square in \mathcal{O},
ring of integers of \mathbb{Q}(\alpha).

Multiply by \(g'(f_d\alpha)^2\),
putting square root into \(\mathbb{Z}[f_d\alpha]\):
compute \(r\) with \(r^2 = g'(f_d\alpha)^2\).
\prod(i - jm)(i - j\alpha)f_d^2.

Then apply the ring morphism
\(\varphi : \mathbb{Z}[f_d\alpha] \rightarrow \mathbb{Z}/n\) taking
\(f_d\alpha\) to \(f_dm\). Compute gcd\{\(n, \varphi(r) - g'(f_dm)\prod(i - jm)f_d\}\}.
In \(\mathbb{Z}/n\) have \(\varphi(r)^2 = \)
\(g'(f_dm)^2 \prod(i - jm)^2f_d^2\).
How to find square product of congruences \((i - jm)(i - j\alpha)\)?

Start with congruences for, e.g., \(y^2\) pairs \((i, j)\).

Look for \(y\)-smooth congruences: \(y\)-smooth \(i - jm\) and \(y\)-smooth \(f_d\) norm\((i - j\alpha) = f_d i^d + \cdots + f_0 j^d = j^d f(i/j)\).

Here “\(y\)-smooth” means “has no prime divisor > \(y\).”

Find enough smooth congruences. Perform linear algebra on exponent vectors mod 2.
Sublattices

Consider a sublattice of pairs \((i, j)\) where \(q\) divides \(j^d f(i/j)\).

Assume squarish lattice. \((i - jm)j^d f(i/j)\) expands by factor \(q^{(d+1)/2}\) before division by \(q\).

Number of sublattice elements within any particular bound on \((i - jm)j^d f(i/j)\) is proportional to \(q^{-(d-1)/(d+1)}\).
Compared to just using $q = 1$, conjecturally obtain $y^4/(d+1)+o(1)$ times as many congruences by using sublattices for all y-smooth integers $q \leq y^2$.

Separately consider $i - jm$ and $j^d f(i/j)/q$ for more precise analysis.

Limit congruences accordingly, increasing smoothness chances.
Multiple number fields

Assume that $f + x - m \in \mathbb{Z}[x]$ is also irreducible.

Pick $\beta \in \mathbb{C}$, root of $f + x - m$.

Two congruences for (i, j):
$(i - jm)(i - j\alpha); (i - jm)(i - j\beta)$.

Expand exponent vectors to handle both $\mathbb{Q}(\alpha)$ and $\mathbb{Q}(\beta)$.

Merge smoothness tests by testing $i - jm$ first,
aborting if $i - jm$ not smooth.

Can use many number fields: $f + 2(x - m)$ etc.
Optimizing NFS

Finding smooth congruences is always a bottleneck.

“What if it’s much faster than linear algebra?”
Answer: If it is, trivially save time by decreasing y.
Optimizing NFS

Finding smooth congruences is always a bottleneck.

“What if it’s much faster than linear algebra?”
Answer: If it is, trivially save time by decreasing y.

Main job of NFS implementor: speed up smoothness detection.
Optimizing NFS

Finding smooth congruences is *always* a bottleneck.

“What if it’s much faster than linear algebra?”
Answer: If it is, trivially save time by decreasing y.

Main job of NFS implementor: speed up smoothness detection.

Other ways to speed up NFS: optimize set of pairs (i, j), choice of f, etc. Fun: e.g., compute $\int_{-\infty}^{\infty} \frac{dx}{((x-m)f)^2/(d+1)}$.
1977 Schroeppel “linear sieve,” forerunner of QS and NFS:
Factor $n \approx s^2$ using congruences
\[(s + i)(s + j)((s + i)(s + j) - n)\].
Sieve these congruences.

1996 Pomerance:
“The time for doing this is unbelievably fast compared with trial dividing each candidate number to see if it is Y-smooth. If the length of the interval is N, the number of steps is only about $N \log \log Y$, or about $\log \log Y$ steps on average per candidate.”
Asymptotic cost exponents

Number of bit operations in number-field sieve, with theorists’ parameters, is $L^{1.90...+o(1)}$ where $L = \exp((\log n)^{1/3}(\log \log n)^{2/3})$.

What are theorists’ parameters?

Choose degree d with $d/(\log n)^{1/3}(\log \log n)^{-1/3} \in 1.40\ldots + o(1)$.
Choose integer $m \approx n^{1/d}$.
Write n as
\[m^d + f_{d-1}m^{d-1} + \cdots + f_1m + f_0\]
with each f_k below $n^{(1+o(1))/d}$.
Choose f with some randomness in case there are bad f’s.

Test smoothness of $i - jm$ for all coprime pairs (i, j) with $1 \leq i, j \leq L^{0.95...+o(1)}$, using primes $\leq L^{0.95...+o(1)}$.

$L^{1.90...+o(1)}$ pairs.
Conjecturally $L^{1.65...+o(1)}$ smooth values of $i - jm$.
Use $L^{0.12...+o(1)}$ number fields.

For each (i, j) with smooth $i - jm$, test smoothness of $i - j\alpha$ and $i - j\beta$ and so on, using primes $\leq L^{0.82...+o(1)}$.

$L^{1.77...+o(1)}$ tests.

Each $|j^d f(i/j)| \leq m^{2.86...+o(1)}$.

Conjecturally $L^{0.95...+o(1)}$ smooth congruences.

$L^{0.95...+o(1)}$ components in the exponent vectors.
Three sizes of numbers here:

$(\log n)^{1/3}(\log \log n)^{2/3}$ bits: y, i, j.

$(\log n)^{2/3}(\log \log n)^{1/3}$ bits: $m, i - jm, j^d f(i/j)$.

$\log n$ bits: n.

Unavoidably $1/3$ in exponent: usual smoothness optimization forces $(\log y)^2 \approx \log m$; balancing norms with m forces $d \log y \approx \log m$; and $d \log m \approx \log n$.
Batch NFS

The number-field sieve used $L^{1.90...+o(1)}$ bit operations finding smooth $i - jm$; only $L^{1.77...+o(1)}$ bit operations finding smooth $jd^f(i/j)$.

Many n’s can share one m; $L^{1.90...+o(1)}$ bit operations to find squares for all n’s.

Oops, linear algebra hurts; fix by reducing y.

But still end up factoring batch in much less time than factoring each n separately.
Asymptotic batch-NFS parameters:

\[d/(\log n)^{1/3} (\log \log n)^{-1/3} \in 1.10 \ldots + o(1). \]

Primes \(\leq L^{0.82\ldots+o(1)} \).

1 \(\leq i, j \leq L^{1.00\ldots+o(1)} \).

Computation independent of \(n \) finds \(L^{1.64\ldots+o(1)} \) smooth values \(i - jm \).

\(L^{1.64\ldots+o(1)} \) operations for each target \(n \).
Batch NFS for RSA-3072

Expand n in base $m = 2^{384}$:

$$n = n_7 m^7 + n_6 m^6 + \cdots + n_0$$

with $0 \leq n_0, n_1, \ldots, n_7 < m$.

Assume irreducibility of

$$n_7 x^7 + n_6 x^6 + \cdots + n_0.$$

Choose height $H = 2^{62} + 2^{61} + 2^{57}$:

consider pairs $(a, b) \in \mathbb{Z} \times \mathbb{Z}$ such that $-H \leq a \leq H$, $0 < b \leq H$, and $\gcd\{a, b\} = 1$.

Choose smoothness bound $y = 2^{66} + 2^{55}$.
There are about
\[12H^2 / \pi^2 \approx 2^{125.51} \]
pairs \((a, b)\).

Find all pairs \((a, b)\) with
y-smooth \((a - bm)c\) where
\[c = n_7 a^7 + n_6 a^6 b + \cdots + n_0 b^7. \]

Combine these congruences into a factorization of \(n\),
if there are enough congruences.

Number of congruences needed
\[\approx 2^y / \log y \approx 2^{62.06}. \]
Heuristic approximation:
\(a - bm \) has same \(y \)-smoothness chance as a uniform random integer in \([1, Hm]\), and this chance is \(u^{-u} \) where \(u = (\log(Hm))/\log y \).

Have \(u \approx 6.707 \) and \(u^{-u} \approx 2^{-18.42} \), so there are about \(2^{107.09} \) pairs \((a, b)\) such that \(a - bm \) is smooth.
Heuristic approximation:
c has same y-smoothness chance
as a uniform random integer in
$[1, 8H^7m]$,
and this chance is $\nu^{-\nu}$
where $\nu = (\log(8H^7m))/\log y$.

Have $\nu \approx 12.395$
and $\nu^{-\nu} \approx 2^{-45.01}$,
so there are about
$2^{62.08}$ pairs (a, b) such that
$a - bm$ and c are both smooth.
Safely above $2^{62.06}$.
Biggest step in computation: Check $2^{125.51}$ pairs (a, b) to find the $2^{107.09}$ pairs where $a - bm$ is smooth.

This step is independent of N, reused by many integers N.
Biggest step in computation:
Check \(2^{125.51}\) pairs \((a, b)\) to find the \(2^{107.09}\) pairs where \(a - bm\) is smooth.

This step is independent of \(N\), reused by many integers \(N\).

Biggest step depending on \(N\):
Check \(2^{107.09}\) pairs \((a, b)\) to see whether \(c\) is smooth.

This is much less computation! ... or is it?
The $2^{107.09}$ pairs (a, b) do not form a lattice, so no easy way to sieve for prime divisors of c.
The $2^{107.09}$ pairs (a, b) do not form a lattice, so no easy way to sieve for prime divisors of c.

Fix:

“Factoring into coprimes”; next topic today.
The $2^{107.09}$ pairs (a, b) do not form a lattice, so no easy way to sieve for prime divisors of c.

Fix:

“Factoring into coprimes”; next topic today.

A different fix:

ECM; this afternoon.
Better smoothness estimates

Consider a uniform random integer in \([1, 2^{400}]\).

What is the chance that the integer is 1000000-\textbf{smooth}, i.e., factors into primes \(\leq 1000000\)?

“Objection: The integers in NFS are not uniform random integers!”
True; will generalize later.
Traditional answer:
Dickman’s ρ function is fast.
A uniform random integer in $[1, y^u]$ has chance $\approx \rho(u)$ of being y-smooth.
If u is small then chance/$\rho(u)$ is $1 + O(\log \log y / \log y)$ for $y \to \infty$.

Flaw #1 in traditional answer:
Not a very good approximation.

Flaw #2 in traditional answer:
Not easy to generalize.
Another traditional answer, trivial to generalize:

Check smoothness of many independent uniform random integers.

Can accurately estimate smoothness probability p after inspecting $10000/p$ integers; typical error $\approx 1\%$.

But this answer is very slow.
Here’s a better answer.

Define S as the set of 1000000-smooth integers $n \geq 1$.

The Dirichlet series for S is

$$\sum [n \in S] x^{\lg n} =
(1 + x^{\lg 2} + x^{2 \lg 2} + x^{3 \lg 2} + \ldots)
(1 + x^{\lg 3} + x^{2 \lg 3} + x^{3 \lg 3} + \ldots)
(1 + x^{\lg 5} + x^{2 \lg 5} + x^{3 \lg 5} + \ldots)
\ldots
(1 + x^{\lg 999983} + x^{2 \lg 999983} + \ldots).$$
Replace primes
2, 3, 5, 7, \ldots, 999983
with slightly larger real numbers
\overline{2} = 1.1^8, \overline{3} = 1.1^{12}, \overline{5} = 1.1^{17},
\ldots, \overline{999983} = 1.1^{145}.

Replace each $2^a 3^b \cdots$ in S with $\overline{2}^a \overline{3}^b \cdots$, obtaining multiset \overline{S}.

The Dirichlet series for \overline{S} is
$$\sum [n \in \overline{S}] x^{\lg n} =$$
$$(1 + x^{\lg 2} + x^2 \lg 2 + x^3 \lg 2 + \ldots)$$
$$(1 + x^{\lg 3} + x^2 \lg 3 + x^3 \lg 3 + \ldots)$$
$$(1 + x^{\lg 5} + x^2 \lg 5 + x^3 \lg 5 + \ldots)$$
$$\ldots$$
$$(1 + x^{\lg 999983} + x^2 \lg 999983 + \ldots).$$
This is simply a power series

\[s_0 z^0 + s_1 z^1 + \ldots = \]

\[(1 + z^8 + z^{2 \cdot 8} + z^{3 \cdot 8} + \ldots) \]

\[(1 + z^{12} + z^{2 \cdot 12} + z^{3 \cdot 12} + \ldots) \]

\[(1 + z^{17} + z^{2 \cdot 17} + z^{3 \cdot 17} + \ldots) \]

\[\ldots (1 + z^{145} + z^{2 \cdot 145} + \ldots) \]

in the variable \(z = x^{\lg 1.1} \).

Compute series mod (e.g.) \(z^{2910} \);
i.e., compute \(s_0, s_1, \ldots, s_{2909} \).

\(\bar{S} \) has \(s_0 + \ldots + s_{2909} \) elements
\(\leq 1.1^{2909} < 2^{400} \), so \(S \) has
at least \(s_0 + \ldots + s_{2909} \)
elements \(< 2^{400} \).
So have guaranteed lower bound on number of 1000000-smooth integers in $[1, 2^{400}]$.

Can compute an upper bound to check looseness of lower bound.

If looser than desired, move 1.1 closer to 1.

Achieve any desired accuracy.

2007 Parsell–Sorenson: Replace big primes with RH bounds, faster to compute.
NFS smoothness is much more complicated than smoothness of uniform random integers.

Most obvious issue: NFS doesn’t use all integers in $[-H, H]$; it uses only values $f(c, d)$ of a specified polynomial f.

Traditional reaction (1979 Schroeppel, et al.): replace H by “typical” f value, heuristically adjusted for roots of f mod small primes.
Can compute smoothness chance much more accurately. No need for “typical” values.

We’ve already computed series
\[s_0 z^0 + s_1 z^1 + \cdots + s_{2909} z^{2909} \]
such that there are
\[s_0 \text{ smooth } \leq 1.1^0, \]
\[s_0 + s_1 \text{ smooth } \leq 1.1^1, \]
\[s_0 + s_1 + s_2 \text{ smooth } \leq 1.1^2, \]
\[\vdots, \]
\[s_0 + \cdots + s_{2909} \text{ smooth } \leq 1.1^{2909}. \]
Approximations are very close.
Number of $f(c, d)$ values in $[-H, H]$ is $\approx (3/\pi^2)H^{2/\deg f}Q(f)$. Can quickly compute $Q(f)$.

For each $i \leq 2909$, number of smooth $|f(c, d)|$ values in $[1.1^{i-1}, 1.1^{i}]$ is approximately $3Q(f)s_i \frac{1.1^{2i/\deg f} - 1.1^{2(i-1)/\deg f}}{\pi^2} \frac{1.1^{i} - 1.1^{i-1}}{1.1^{i} - 1.1^{i-1}}$.

Add to see total number of smooth $f(c, d)$ values.
Approximation so far has ignored roots of f.

Fix: Smoothness chance in $\mathbb{Q}(\alpha)$ for $c - \alpha d$ is, conjecturally, very close to smoothness chance for ideals of the same size as $c - \alpha d$.

Dirichlet series for smooth ideals: simply replace
\[
1 + x^{\lg p} + x^2 \lg p + \cdots \quad \text{with} \quad 1 + x^{\lg P} + x^2 \lg P + \cdots
\]
where P is norm of prime ideal.

Same computations as before. Should also be easy to adapt Parsell–Sorenson to ideals.
Typically $f(c, d)$ is product $(c - md) \cdot \text{norm of } (c - \alpha d)$.

Smoothness chance in $\mathbb{Q} \times \mathbb{Q}(\alpha)$ for $(c - md, c - \alpha d)$ is, conjecturally, close to smoothness chance for ideals of the same size.

Can account in various ways for correlations and anti-correlations between $c - md$ and $c - \alpha d$, but these effects seem small.
Dirichlet-series computations easily handle early aborts and other complications in the notion of smoothness.

Example: Which integers are 1000000-smooth integers $< 2^{400}$ times one prime in $[10^6, 10^9]$?

Multiply $s_0 z^0 + \cdots + s_{2909} z^{2909}$ by $x^{\lg 1000003 + \cdots + x^{\lg 999999937}}$.
Polynomial selection

Many f’s possible for n. How to find f that minimizes NFS time?

General strategy:
Enumerate many f’s.
For each f, estimate time using information about f arithmetic, distribution of $d^{\deg f} f(c/d)$, distribution of smooth numbers.
Let’s restrict attention to \(f(x) = (x - m)(f_5 x^5 + f_4 x^4 + \cdots + f_0) \).

Take \(m \) near \(n^{1/6} \).

Expand \(n \) in base \(m \):
\[
 n = f_5 m^5 + f_4 m^4 + \cdots + f_0.
\]

Can use negative coefficients.

Have \(f_5 \approx n^{1/6} \).

Typically all the \(f_i \)'s are on scale of \(n^{1/6} \).

(1993 Buhler Lenstra Pomerance)
To reduce f values by factor B:

Enumerate many possibilities for m near $B^{0.25} n^{1/6}$.

Have $f_5 \approx B^{-1.25} n^{1/6}$.

f_4, f_3, f_2, f_1, f_0 could be as large as $B^{0.25} n^{1/6}$.

Hope that they are smaller, on scale of $B^{-1.25} n^{1/6}$.

Conjecturally this happens within roughly $B^{7.5}$ trials.

Then $(c - dm)(f_5 c^5 + \cdots + f_0 d^5)$ is on scale of $B^{-1} R^6 n^{2/6}$ for c, d on scale of R.
Can force f_4 to be small.

Say $n = f_5 m^5 + f_4 m^4 + \cdots + f_0$.

Choose integer $k \approx f_4/5f_5$.

Write n in base $m + k$:

$n = f_5(m + k)^5$

$$+ (f_4 - 5kf_5)(m + k)^4 + \cdots.$$

Now degree-4 coefficient is on same scale as f_5.

Hope for small f_3, f_2, f_1, f_0.

Conjecturally this happens within roughly B^6 trials.
Improvement:
Skew the coefficients.
(1999 Murphy, without analysis)

Enumerate many possibilities for m near $Bn^{1/6}$.

Have $f_5 \approx B^{-5}n^{1/6}$.
f_4, f_3, f_2, f_1, f_0 could be as large as $Bn^{1/6}$.

Force small f_4. Hope for f_3 on scale of $B^{-2}n^{1/6}$, f_2 on scale of $B^{-0.5}n^{1/6}$.
Conjecturally this happens within roughly $B^{4.5}$ trials:

$$(2 + 1) + (0.5 + 1) = 4.5.$$

For c on scale of $B^{0.75} R$ and d on scale of $B^{-0.75} R$, have $c - md$ on scale of $B^{0.25} R n^{1/6}$ and $f_5 c^5 + f_4 c^4 d + \cdots + f_0 d^5$ on scale of $B^{-1.25} R^5 n^{1/6}$.

Product $B^{-1} R^6 n^{2/6}$.

Similar effect of B on $Q(f)$; can afford to compute Q for many attractive f’s.
Can we do better? Yes!
The following algorithm: only about $B^{3.5}$ trials, conjecturally.
Each trial is fairly expensive, using four-dimensional integer-relation finding, but worthwhile for large B.
This is so fast that we should start searching $(m_2x - m_1)(c_5x^5 + c_4x^4 + \cdots + c_0)$.
Say \(n = f_5 m^5 + f_4 m^4 + \cdots + f_0 \).

Choose integer \(k \approx f_4/5 f_5 \)
and integer \(l \approx m/5 f_5 \).

Find all short vectors
in lattice generated by
\((m/B^3, 0, 0, 10 f_5 k^2 - 4 f_4 k + f_3), (0, m/B^4, 0, 20 f_5 k l - 4 f_4 l), (0, 0, m/B^5, 10 f_5 l^2), (0, 0, 0, m).\)
Hope for j below B^1 with $(10f_5k^2 - 4f_4k + f_3)$
+ $(20f_5k\ell - 4f_4\ell)j$
+ $(10f_5\ell^2)j^2$
below m/B^3 modulo m.

Write n in base $m + k + j\ell$.
Obtain degree-5 coefficient on scale of $B^{-5}n^{1/6}$;
degree-4 coefficient on scale of $B^{-4}n^{1/6}$;
degree-3 coefficient on scale of $B^{-2}n^{1/6}$.
Hope for good degree 2.
Bad news, part 1:
All known search methods, including this one, become ineffective as degree increases.

Bad news, part 2:
In batch-NFS context, searching large m pool requires scaling up $\#$ targets.