Quantum computing for cryptographers III Simon's algorithm

Tanja Lange idea and design by Daniel J. Bernstein

Eindhoven University of Technology

SAC - Post-quantum cryptography

Assumptions:

- Function $f: \mathbf{F}_2^n \to \{0,1\}^n$.
- Given any $u \in \mathbf{F}_2^n$. can efficiently compute f(u).
- Nonzero $s \in \mathbf{F}_2^n$.
- f(u) = f(u + s) for all u.
- f has no other collisions.

Goal: Figure out s.

Assumptions:

- Function $f: \mathbf{F}_2^n \to \{0,1\}^n$.
- Given any $u \in \mathbf{F}_2^n$. can efficiently compute f(u).
- Nonzero $s \in \mathbf{F}_2^n$.
- f(u) = f(u + s) for all u.
- f has no other collisions.

Goal: Figure out s.

Traditional algorithm to find *s*: compute *f* for many inputs, hope to find collision.

Assumptions:

- Function $f: \mathbf{F}_2^n \to \{0,1\}^n$.
- Given any $u \in \mathbf{F}_2^n$. can efficiently compute f(u).
- Nonzero $s \in \mathbf{F}_2^n$.
- f(u) = f(u+s) for all u.
- f has no other collisions.

Goal: Figure out s.

Traditional algorithm to find s: compute f for many inputs, hope to find collision.

Simon's algorithm finds s with $\approx n$ reversible computations of f.

Assumptions:

- Function $f: \mathbf{F}_2^n \to \{0,1\}^n$.
- Given any $u \in \mathbf{F}_2^n$. can efficiently compute f(u).
- Nonzero $s \in \mathbf{F}_2^n$.
- f(u) = f(u+s) for all u.
- f has no other collisions.

Goal: Figure out s.

Traditional algorithm to find s: compute f for many inputs, hope to find collision.

Simon's algorithm finds s with $\approx n$ reversible computations of f.

Step 1. Set up pure zero state:

Assumptions:

- Function $f: \mathbf{F}_2^n \to \{0,1\}^n$.
- Given any $u \in \mathbf{F}_2^n$. can efficiently compute f(u).
- Nonzero $s \in \mathbf{F}_2^n$.
- f(u) = f(u+s) for all u.
- f has no other collisions.

Goal: Figure out s.

Traditional algorithm to find *s*: compute *f* for many inputs, hope to find collision.

Simon's algorithm finds s with $\approx n$ reversible computations of f.

$\begin{array}{c} \textbf{Step 2. Hadamard}_0: \\ \textbf{1, 1, 0, 0, 0, 0, 0, 0, 0,} \\ \textbf{0, 0, 0, 0, 0, 0, 0, 0, 0,} \\ \textbf{0, 0, 0, 0, 0, 0, 0, 0, 0,} \\ \textbf{0, 0, 0, 0, 0, 0, 0, 0, 0,} \\ \textbf{0, 0, 0, 0, 0, 0, 0, 0, 0,} \\ \textbf{0, 0, 0, 0, 0, 0, 0, 0, 0,} \\ \textbf{0, 0, 0, 0, 0, 0, 0, 0, 0,} \\ \textbf{0, 0, 0, 0, 0, 0, 0, 0, 0,} \\ \textbf{0, 0, 0, 0, 0, 0, 0, 0, 0,} \end{array}$

Assumptions:

- Function $f: \mathbf{F}_2^n \to \{0,1\}^n$.
- Given any $u \in \mathbf{F}_2^n$. can efficiently compute f(u).
- Nonzero $s \in \mathbf{F}_2^n$.
- f(u) = f(u+s) for all u.
- f has no other collisions.

Goal: Figure out s.

Traditional algorithm to find s: compute f for many inputs, hope to find collision.

Simon's algorithm finds s with $\approx n$ reversible computations of f.

$\begin{array}{c} \textbf{Step 3. Hadamard_1:} \\ \textbf{1, 1, 1, 1, 0, 0, 0, 0,} \\ \textbf{0, 0, 0, 0, 0, 0, 0, 0, 0,} \\ \textbf{0, 0, 0, 0, 0, 0, 0, 0, 0,} \\ \textbf{0, 0, 0, 0, 0, 0, 0, 0, 0,} \\ \textbf{0, 0, 0, 0, 0, 0, 0, 0, 0,} \\ \textbf{0, 0, 0, 0, 0, 0, 0, 0,} \\ \textbf{0, 0, 0, 0, 0, 0, 0, 0,} \\ \textbf{0, 0, 0, 0, 0, 0, 0, 0,} \\ \textbf{0, 0, 0, 0, 0, 0, 0, 0,} \\ \textbf{0, 0, 0, 0, 0, 0, 0, 0,} \end{array}$

Assumptions:

- Function $f: \mathbf{F}_2^n \to \{0,1\}^n$.
- Given any $u \in \mathbf{F}_2^n$. can efficiently compute f(u).
- Nonzero $s \in \mathbf{F}_2^n$.
- f(u) = f(u + s) for all u.
- f has no other collisions.

Goal: Figure out s.

Traditional algorithm to find s: compute f for many inputs. hope to find collision.

Simon's algorithm finds s with $\approx n$ reversible computations of f.

Step 4. Hadamard₂:

1, 1, 1, 1, 1, 1, 1, 1, 0. 0. 0. 0. 0. 0. 0. 0.

Each column is a parallel universe.

Assumptions:

- Function $f: \mathbf{F}_2^n \to \{0,1\}^n$.
- Given any $u \in \mathbf{F}_2^n$. can efficiently compute f(u).
- Nonzero $s \in \mathbf{F}_2^n$.
- f(u) = f(u+s) for all u.
- f has no other collisions.

Goal: Figure out s.

Traditional algorithm to find s: compute f for many inputs, hope to find collision.

Simon's algorithm finds s with $\approx n$ reversible computations of f.

Assumptions:

- Function $f: \mathbf{F}_2^n \to \{0,1\}^n$.
- Given any $u \in \mathbf{F}_2^n$. can efficiently compute f(u).
- Nonzero $s \in \mathbf{F}_2^n$.
- f(u) = f(u+s) for all u.
- f has no other collisions.

Goal: Figure out s.

Traditional algorithm to find s: compute f for many inputs, hope to find collision.

Simon's algorithm finds s with $\approx n$ reversible computations of f.

Assumptions:

- Function $f: \mathbf{F}_2^n \to \{0,1\}^n$.
- Given any $u \in \mathbf{F}_2^n$. can efficiently compute f(u).
- Nonzero $s \in \mathbf{F}_2^n$.
- f(u) = f(u + s) for all u.
- f has no other collisions.

Goal: Figure out s.

Traditional algorithm to find s: compute f for many inputs, hope to find collision.

Simon's algorithm finds s with $\approx n$ reversible computations of f.

Assumptions:

- Function $f: \mathbf{F}_2^n \to \{0,1\}^n$.
- Given any $u \in \mathbf{F}_2^n$. can efficiently compute f(u).
- Nonzero $s \in \mathbf{F}_2^n$.
- f(u) = f(u+s) for all u.
- f has no other collisions.

Goal: Figure out s.

Traditional algorithm to find s: compute f for many inputs, hope to find collision.

Simon's algorithm finds s with $\approx n$ reversible computations of f.

Assumptions:

- Function $f: \mathbf{F}_2^n \to \{0,1\}^n$.
- Given any $u \in \mathbf{F}_2^n$. can efficiently compute f(u).
- Nonzero $s \in \mathbf{F}_2^n$.
- f(u) = f(u+s) for all u.
- f has no other collisions.

Goal: Figure out s.

Traditional algorithm to find *s*: compute *f* for many inputs, hope to find collision.

Simon's algorithm finds s with $\approx n$ reversible computations of f.

Assumptions:

- Function $f: \mathbf{F}_2^n \to \{0,1\}^n$.
- Given any $u \in \mathbf{F}_2^n$. can efficiently compute f(u).
- Nonzero $s \in \mathbf{F}_2^n$.
- f(u) = f(u+s) for all u.
- f has no other collisions.

Goal: Figure out s.

Traditional algorithm to find s: compute f for many inputs, hope to find collision.

Simon's algorithm finds s with $\approx n$ reversible computations of f.

Assumptions:

- Function $f: \mathbf{F}_2^n \to \{0,1\}^n$.
- Given any $u \in \mathbf{F}_2^n$. can efficiently compute f(u).
- Nonzero $s \in \mathbf{F}_2^n$.
- f(u) = f(u+s) for all u.
- f has no other collisions.

Goal: Figure out s.

Traditional algorithm to find s: compute f for many inputs, hope to find collision.

Simon's algorithm finds s with $\approx n$ reversible computations of f.

Assumptions:

- Function $f: \mathbf{F}_2^n \to \{0,1\}^n$.
- Given any $u \in \mathbf{F}_2^n$. can efficiently compute f(u).
- Nonzero $s \in \mathbf{F}_2^n$.
- f(u) = f(u+s) for all u.
- f has no other collisions.

Goal: Figure out s.

Traditional algorithm to find s: compute f for many inputs, hope to find collision.

Simon's algorithm finds s with $\approx n$ reversible computations of f.

Assumptions:

- Function $f: \mathbf{F}_2^n \to \{0,1\}^n$.
- Given any $u \in \mathbf{F}_2^n$. can efficiently compute f(u).
- Nonzero $s \in \mathbf{F}_2^n$.
- f(u) = f(u+s) for all u.
- f has no other collisions.

Goal: Figure out s.

Traditional algorithm to find s: compute f for many inputs, hope to find collision.

Simon's algorithm finds s with $\approx n$ reversible computations of f.

Assumptions:

- Function $f: \mathbf{F}_2^n \to \{0,1\}^n$.
- Given any $u \in \mathbf{F}_2^n$. can efficiently compute f(u).
- Nonzero $s \in \mathbf{F}_2^n$.
- f(u) = f(u+s) for all u.
- f has no other collisions.

Goal: Figure out s.

Traditional algorithm to find *s*: compute *f* for many inputs, hope to find collision.

Simon's algorithm finds s with $\approx n$ reversible computations of f.

Each column is a parallel universe performing its own computations. Now done computing f(u).

Assumptions:

- Function $f: \mathbf{F}_2^n \to \{0,1\}^n$.
- Given any $u \in \mathbf{F}_2^n$. can efficiently compute f(u).
- Nonzero $s \in \mathbf{F}_2^n$.
- f(u) = f(u+s) for all u.
- f has no other collisions.

Goal: Figure out s.

Traditional algorithm to find *s*: compute *f* for many inputs, hope to find collision.

Simon's algorithm finds s with $\approx n$ reversible computations of f.

Each column is a parallel universe performing its own computations. Now done computing f(u). Can see: f(u) and f(u+101) match.

Tanja Lange

Assumptions:

- Function $f: \mathbf{F}_2^n \to \{0,1\}^n$.
- Given any $u \in \mathbf{F}_2^n$. can efficiently compute f(u).
- Nonzero $s \in \mathbf{F}_2^n$.
- f(u) = f(u+s) for all u.
- f has no other collisions.

Goal: Figure out s.

Traditional algorithm to find s: compute f for many inputs, hope to find collision.

Simon's algorithm finds s with $\approx n$ reversible computations of f.

Notation: $\overline{1}$ means -1.

Assumptions:

- Function $f: \mathbf{F}_2^n \to \{0,1\}^n$.
- Given any $u \in \mathbf{F}_2^n$. can efficiently compute f(u).
- Nonzero $s \in \mathbf{F}_2^n$.
- f(u) = f(u+s) for all u.
- f has no other collisions.

Goal: Figure out s.

Traditional algorithm to find *s*: compute *f* for many inputs, hope to find collision.

Simon's algorithm finds s with $\approx n$ reversible computations of f.

Assumptions:

- Function $f: \mathbf{F}_2^n \to \{0,1\}^n$.
- Given any $u \in \mathbf{F}_2^n$. can efficiently compute f(u).
- Nonzero $s \in \mathbf{F}_2^n$.
- f(u) = f(u+s) for all u.
- f has no other collisions.

Goal: Figure out s.

Traditional algorithm to find *s*: compute *f* for many inputs, hope to find collision.

Simon's algorithm finds s with $\approx n$ reversible computations of f.

Assumptions:

- Function $f: \mathbf{F}_2^n \to \{0,1\}^n$.
- Given any $u \in \mathbf{F}_2^n$. can efficiently compute f(u).
- Nonzero $s \in \mathbf{F}_2^n$.
- f(u) = f(u+s) for all u.
- f has no other collisions.

Goal: Figure out s.

Traditional algorithm to find s: compute f for many inputs, hope to find collision.

Simon's algorithm finds s with $\approx n$ reversible computations of f.

0, 0, 0, 0, 0, 0, 0, 0,

2, 0, 2, 0, 0, 2, 0, 2,

Step 9: Measure first 3 qubits.
Obtain some information about "period" s:
a random vector orthogonal to 101.

Assumptions:

- Function $f: \mathbf{F}_2^n \to \{0,1\}^n$.
- Given any $u \in \mathbf{F}_2^n$. can efficiently compute f(u).
- Nonzero $s \in \mathbf{F}_2^n$.
- f(u) = f(u + s) for all u.
- f has no other collisions.

Goal: Figure out s.

Traditional algorithm to find s: compute f for many inputs, hope to find collision.

Simon's algorithm finds s with $\approx n$ reversible computations of f.

Step 9: Measure first 3 qubits. Obtain some information about "period" s: a random vector orthogonal to 101. Repeat to pin down 101

Generalize Step 5 to any function : $\mathbf{F}_2^n \to \{0,1\}^m$ which satisfies f(u) = f(u+s) for some s. "Usually" algorithm figures out s.

Generalize Step 5 to any function : $\mathbf{F}_2^n \to \{0,1\}^m$ which satisfies f(u) = f(u+s) for some s. "Usually" algorithm figures out s.

Shor's algorithm replaces addition in \mathbf{F}_2^n with more general + operation. Many spectacular applications.

Generalize Step 5 to any function : $\mathbf{F}_2^n \to \{0,1\}^m$ which satisfies f(u) = f(u+s) for some s. "Usually" algorithm figures out s.

Shor's algorithm replaces addition in \mathbf{F}_2^n with more general + operation. Many spectacular applications.

e.g. Shor finds "random" s with

$$2^u \equiv 2^{u+s} \mod N$$
.

Easy to factor N using this. (See video Shor vs. RSA.)

Generalize Step 5 to any function : $\mathbf{F}_2^n \to \{0,1\}^m$ which satisfies f(u) = f(u+s) for some s. "Usually" algorithm figures out s.

Shor's algorithm replaces addition in \mathbf{F}_2^n with more general + operation. Many spectacular applications.

e.g. Shor finds "random" s with

$$2^u \equiv 2^{u+s} \mod N$$
.

Easy to factor N using this. (See video Shor vs. RSA.)

e.g. Shor finds "random" s, t with

$$g^u h^v \equiv g^{u+s} h^{v+t} \mod p.$$

Easy to compute discrete logs: $\log_{\sigma}(h) \equiv -s/t \mod \ell$, where $\ell = \operatorname{ord}(g)$.