Isogeny-basd cryptography V

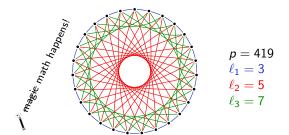
Tanja Lange (with lots of slides by Lorenz Panny)

Eindhoven University of Technology

SAC – Post-quantum cryptography

CSIDH in one slide

- ► Choose some small odd primes $\ell_1, ..., \ell_n$.
- ▶ Make sure $p = 4 \cdot \ell_1 \cdots \ell_n 1$ is prime.
- ▶ Let $X = \{y^2 = x^3 + Ax^2 + x \text{ over } \mathbb{F}_p \text{ with } p+1 \text{ points}\}.$
- ▶ Look at the ℓ_i -isogenies defined over \mathbb{F}_p within X.



- ▶ Walking "left" and "right" on any ℓ_i -subgraph is efficient.
- ▶ We can represent $E \in X$ as a single coefficient $A \in \mathbb{F}_p$.

Walking in the CSIDH graph

Taking a "positive" step on the ℓ_i -subgraph.

- 1. Find a point $(x,y) \in E$ of order ℓ_i with $x,y \in \mathbb{F}_p$. The order of any $(x,y) \in E$ divides p+1, so $[(p+1)/\ell_i](x,y) = \infty$ or a point of order ℓ_i . Sample a new point if you get ∞ .
- 2. Compute the isogeny with kernel $\langle (x, y) \rangle$ using Vélu's formulas.

Walking in the CSIDH graph

Taking a "positive" step on the ℓ_i -subgraph.

- 1. Find a point $(x,y) \in E$ of order ℓ_i with $x,y \in \mathbb{F}_p$. The order of any $(x,y) \in E$ divides p+1, so $[(p+1)/\ell_i](x,y) = \infty$ or a point of order ℓ_i . Sample a new point if you get ∞ .
- 2. Compute the isogeny with kernel $\langle (x, y) \rangle$ using Vélu's formulas.

Taking a "negative" step on the ℓ_i -subgraph.

- 1. Find a point $(x, y) \in E$ of order ℓ_i with $x \in \mathbb{F}_p$ but $y \notin \mathbb{F}_p$. Same test as above to find such a point.
- 2. Compute the isogeny with kernel $\langle (x, y) \rangle$ using Vélu's formulas.

Walking in the CSIDH graph

Taking a "positive" step on the ℓ_i -subgraph.

- 1. Find a point $(x,y) \in E$ of order ℓ_i with $x,y \in \mathbb{F}_p$. The order of any $(x,y) \in E$ divides p+1, so $[(p+1)/\ell_i](x,y) = \infty$ or a point of order ℓ_i . Sample a new point if you get ∞ .
- 2. Compute the isogeny with kernel $\langle (x,y) \rangle$ using Vélu's formulas.

Taking a "negative" step on the ℓ_i -subgraph.

- 1. Find a point $(x, y) \in E$ of order ℓ_i with $x \in \mathbb{F}_p$ but $y \notin \mathbb{F}_p$. Same test as above to find such a point.
- 2. Compute the isogeny with kernel $\langle (x, y) \rangle$ using Vélu's formulas.

Upshot: With "x-only arithmetic" everything happens over \mathbb{F}_p .

⇒ Efficient to implement! There are several more speedups, such as pushing points through isogenies.

For math details see talk IV.

Tanja Lange

"CSIDH: an efficient post-quantum commutative group action"

"CSIDH: an efficient post-quantum commutative group action"

```
Cycles are compatible: [right then left] = [left then right] \rightsquigarrow only need to keep track of total step counts for each \ell_i. Example: [+,+,-,-,-,+,-,-] just becomes (+1, 0,-3) \in \mathbb{Z}^3.
```

"CSIDH: an efficient post-quantum commutative group action"

```
Cycles are compatible: [right then left] = [left then right] \rightsquigarrow only need to keep track of total step counts for each \ell_i. Example: [+,+,-,-,-,+,-,-] just becomes (+1, 0,-3) \in \mathbb{Z}^3.
```

There is a group action of $(\mathbb{Z}^n, +)$ on our set of curves X!

"CSIDH: an efficient post-quantum commutative group action"

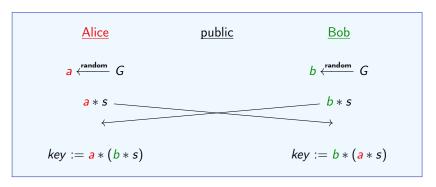
```
Cycles are compatible: [right then left] = [left then right] \rightsquigarrow only need to keep track of total step counts for each \ell_i. Example: [+,+,-,-,-,+,-,-] just becomes (+1, 0,-3) \in \mathbb{Z}^3.
```

There is a group action of $(\mathbb{Z}^n, +)$ on our set of curves X!

Many paths are "useless". Fun fact: Quotienting out trivial actions yields the ideal-class group $\operatorname{cl}(\mathbb{Z}[\sqrt{-p}])$.

Cryptographic group actions

Like in the CSIDH example, we *generally* get a DH-like key exchange from a commutative group action $G \times S \rightarrow S$:



Why no Shor?

Shor computes α from $h = g^{\alpha}$ by finding the kernel of the map

$$f: \mathbb{Z}^2 \to G, \ (x,y) \mapsto g^x \underset{\uparrow}{\cdot} h^y$$

For general group actions, we cannot compose x * s and y * (b * s).

For CSIDH this would require composing two elliptic curves in some form compatible with the action of G.

CSIDH security

Core problem:

Given $E, E' \in X$, find a smooth-degree isogeny $E \to E'$.

Size of key space:

▶ About \sqrt{p} of all $A \in \mathbb{F}_p$ are valid keys. (More precisely $\#\text{cl}(\mathbb{Z}[\sqrt{-p}])$ keys.)

Without quantum computer:

Meet-in-the-middle variants: Time O(⁴√p).
 (2016 Delfs–Galbraith)

CSIDH security

Core problem:

Given $E, E' \in X$, find a smooth-degree isogeny $E \to E'$.

Size of key space:

▶ About \sqrt{p} of all $A \in \mathbb{F}_p$ are valid keys. (More precisely $\#\operatorname{cl}(\mathbb{Z}[\sqrt{-p}])$ keys.)

Without quantum computer:

► Meet-in-the-middle variants: Time $O(\sqrt[4]{p})$. (2016 Delfs–Galbraith)

With quantum computer:

- ► Abellian hidden-shift algorithms apply (2014 Childs–Jao–Soukharev)
 - Kuperberg's algorithm has subexponential complexity.

CSIDH security:

▶ Public-key validation: Quickly check that $E_A: y^2 = x^3 + Ax^2 + x$ has p + 1 points.

CSIDH-512 https://csidh.isogeny.org/

Definition:

- ▶ $p = 4 \prod_{i=1}^{74} \ell_i 1$ with ℓ_1, \dots, ℓ_{73} first 73 odd primes. $\ell_{74} = 587$.
- ▶ Exponents $-5 \le e_i \le 5$ for all $1 \le i \le 74$.

Sizes:

- ▶ Private keys: 32 bytes. (37 in current software for simplicity.)
- ▶ Public keys: 64 bytes (just one \mathbb{F}_p element).

Performance on typical Intel Skylake laptop core:

- ► Clock cycles: about 12 · 10⁷ per operation.
- ► Somewhat more for constant-time implementations.

Security:

▶ Pre-quantum: at least 128 bits.

CSIDH-512 https://csidh.isogeny.org/

Definition:

- ▶ $p = 4 \prod_{i=1}^{74} \ell_i 1$ with ℓ_1, \dots, ℓ_{73} first 73 odd primes. $\ell_{74} = 587$.
- ▶ Exponents $-5 \le e_i \le 5$ for all $1 \le i \le 74$.

Sizes:

- ▶ Private keys: 32 bytes. (37 in current software for simplicity.)
- ▶ Public keys: 64 bytes (just one \mathbb{F}_p element).

Performance on typical Intel Skylake laptop core:

- ► Clock cycles: about 12 · 10⁷ per operation.
- ► Somewhat more for constant-time implementations.

Security:

- ▶ Pre-quantum: at least 128 bits.
- ► Post-quantum: complicated.

 Recent work analyzing cost: see https://quantum.isogeny.org.

Several papers analyzing Kuperberg. (2018 Biasse–lezzi-Jacobson, 2018-2020 Bonnetain–Schrottenloher, 2020 Peikert)

https://csidh.isogeny.org/analysis.html

Kuperberg's algorithm consists of two components:

- 1. Evaluate the group action many times. ("oracle calls")
- 2. Combine the results in a certain way. ("sieving")

Kuperberg's algorithm consists of two components:

- 1. Evaluate the group action many times. ("oracle calls")
- 2. Combine the results in a certain way. ("sieving")
- ► The algorithm admits many different tradeoffs.
- ► Oracle calls are expensive.
- ► The sieving phase has classical and quantum operations.

Kuperberg's algorithm consists of two components:

- 1. Evaluate the group action many times. ("oracle calls")
- 2. Combine the results in a certain way. ("sieving")
- ► The algorithm admits many different tradeoffs.
- ► Oracle calls are expensive.
- ► The sieving phase has classical and quantum operations.

How to compare costs?

(Is one qubit operation \approx one bit operation? a hundred? millions?)

Kuperberg's algorithm consists of two components:

- 1. Evaluate the group action many times. ("oracle calls")
- 2. Combine the results in a certain way. ("sieving")
- ► The algorithm admits many different tradeoffs.
- ► Oracle calls are expensive.
- ► The sieving phase has classical *and* quantum operations.

```
How to compare costs?
```

(Is one qubit operation \approx one bit operation? a hundred? millions?)

⇒ It is still rather unclear how to choose CSIDH parameters.

...but all known attacks cost $\exp((\log p)^{1/2+o(1)})!$ Recent improvements to sieving target the o(1).

Kuperberg applies to all commutative group actions.