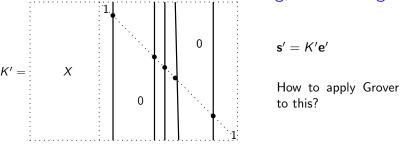
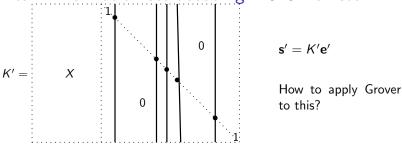
Code-based cryptography VI


Quantum information-set decoding

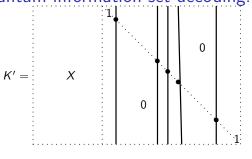
Tanja Lange with some slides by Tung Chou and Christiane Peters

Eindhoven University of Technology


SAC - Post-quantum cryptography

Generic attack: Information-set decoding, 1962 Prange

- 1 Permute K and bring to systematic form $K' = (X|I_{n-k})$. (If this fails, repeat with other permutation).
- **2** Then K' = UKP for some permutation matrix P and U the matrix that produces systematic form.
- 3 This updates \mathbf{s} to $U\mathbf{s}$.
- 4 If wt(Us) = t then e' = (00...0)||Us. Output unpermuted version of e'.
- 5 Else return to 1 to rerandomize.


Quantum information-set decoding. 2010 Bernstein

- 1 Permute K and bring to systematic form $K' = (X|I_{n-k})$. (If this fails, repeat with other permutation).
- 2 Then K' = UKP for some permutation matrix P and U the matrix that produces systematic form.
- 3 This updates \mathbf{s} to $U\mathbf{s}$.
- 4 If wt(Us) = t then e' = (00...0)||Us. Output unpermuted version of e'.
- 5 Else return to 1 to rerandomize.

Turn all this into function f on selected positions, return 0 iff $\operatorname{wt}(U\mathbf{s}) = t$ and 1 otherwise. E.g. output qubit gets ORed with 1 at failure.

Quantum information-set decoding. 2010 Bernstein

$$\mathbf{s}' = K'\mathbf{e}'$$

Function f is on size $\binom{n}{k}$ search space with $\binom{n}{t}$ roots. Generalized Grover handles this in $\sqrt{\binom{n}{k}}/\binom{n}{t}$ iterations.

- 1 Permute K and bring to systematic form $K' = (X|I_{n-k})$. (If this fails, repeat with other permutation).
- 2 Then K' = UKP for some permutation matrix P and U the matrix that produces systematic form.
- 3 This updates **s** to *U***s**.
- 4 If wt(Us) = t then e' = (00...0)||Us. Output unpermuted version of e'.
- 5 Else return to 1 to rerandomize.

Turn all this into function f on selected positions, return 0 iff $\operatorname{wt}(U\mathbf{s}) = t$ and 1 otherwise. E.g. output qubit gets ORed with 1 at failure.

Quantum speedups for faster ISD

- Extend function f to include (all) combinations for searching in X.
- This increases the cost for the function evaluation.
- The square-root speedup applies to the number of iterations, i.e., the outer loop.
- Can rebalance inner and outer loop to optimize, e.g., choose a smaller value for *p*.

Quantum speedups for faster ISD

- Extend function f to include (all) combinations for searching in X.
- This increases the cost for the function evaluation.
- The square-root speedup applies to the number of iterations, i.e., the outer loop.
- Can rebalance inner and outer loop to optimize, e.g., choose a smaller value for *p*.
- Quantum walks (not covered in our intro to quantum computing)
 allow to get quantum speedups also in the inner loops.
- Asymptotic results are often stated for constant ratios k/n, but the case of Goppa codes has (n mt)/n grow with n.

The McEliece system uses $(c_0+o(1))\lambda^2(\lg\lambda)^2$ -bit keys as $\lambda\to\infty$ to achieve 2^λ security against all attacks known today. Same $c_0\approx 0.7418860694$.

Quantum speedups for faster ISD

- Extend function f to include (all) combinations for searching in X.
- This increases the cost for the function evaluation.
- The square-root speedup applies to the number of iterations, i.e., the outer loop.
- Can rebalance inner and outer loop to optimize, e.g., choose a smaller value for *p*.
- Quantum walks (not covered in our intro to quantum computing) allow to get quantum speedups also in the inner loops.
- Asymptotic results are often stated for constant ratios k/n, but the case of Goppa codes has (n mt)/n grow with n.

The McEliece system uses $(c_0+o(1))\lambda^2(\lg\lambda)^2$ -bit keys as $\lambda\to\infty$ to achieve 2^λ security against all attacks known today. Same $c_0\approx 0.7418860694$.

Replacing λ with 2λ stops all known quantum attacks.

See https://classic.mceliece.org for a concrete proposed system.