Cryptography I, homework sheet 5
Due: 21 October 2011, 10:45

1. Find the smallest positive integer \(x \) satisfying the following system of congruences, should such a solution exist.
\[
\begin{align*}
\quad x & \equiv 3 \text{ mod } 4 \\
\quad x & \equiv 6 \text{ mod } 12
\end{align*}
\]

2. Find the smallest positive integer \(x \) satisfying the following system of congruences, should such a solution exist.
\[
\begin{align*}
\quad x & \equiv 4 \text{ mod } 9 \\
\quad x & \equiv 10 \text{ mod } 12
\end{align*}
\]

3. Users \(A, B, C, D, \) and \(E \) are friends of \(S \). They have public keys \((e_A, n_A) = (5, 62857), (e_B, n_B) = (5, 64541), (e_C, n_C) = (5, 69799), (e_D, n_D) = (5, 89179), \) and \((e_E, n_E) = (5, 82583)\). You know that \(S \) sends the same message to all of them and you observe the ciphertexts \(c_A = 11529, c_B = 60248, c_C = 27504, c_D = 43997, \) and \(c_E = 44926 \). What was the message?

4. Show how to retrieve the message \(m \) in RSA-OAEP from \(m'||r' \).

5. The \(n \times n \) matrices over \(\mathbb{R} \) form a vectorspace over \(\mathbb{R} \), where \(\oplus \) is matrix addition and for \(a \in \mathbb{R} \) and \(A \in M_n(\mathbb{R}) \) the operation \(a \odot A \) is defined as multiplying every entry in \(A \) by \(a \). (You do not need to show this.) What is the dimension of \(M_n(\mathbb{R}) \) as an \(\mathbb{R} \) vectorspace?

The following is an excerpt from the algebra and number theory script, check there for more details on vector spaces and field.

Definition 1 (Field)

A set \(K \) is a field with respect to two operations \(\odot, \odot \) denoted by \((K, \odot, \odot)\) if

1. \((K, \odot)\) is an abelian group.
2. \((K^*, \odot)\) is an abelian group, where \(K^* = K \setminus \{e_{\odot}\} \) is all of \(K \) except for the neutral element with respect to \(\odot \).
3. The distributive law holds in \(K \):
\[
\quad a \odot (b \circ c) = a \circ b \odot a \circ c \text{ for all } a, b, c \in K.
\]

Let \(L \) be a field and \(K \subseteq L \). If \(K \) is a field itself it is a subfield of \(L \) and \(L \) is an extension field of \(K \).

Definition 2 (Vector space)

A set \(V \) is a vector space over a field \((K, \odot, \odot)\) with respect to one operation \(\oplus \) if

1. \((V, \oplus)\) is an abelian group.
2. \((K, \odot, \odot)\) is a field. Let \(e_{\odot}, e_{\oplus} \) be the neutral elements with respect to \(\odot \) and \(\oplus \).
3. There exists an operation \(\odot : K \times V \to V \) such that for all \(a, b \in K \) and for all \(v, w \in V \) we have

\[
(a \circ b) \odot v = a \odot v \odot b \odot v
\]

\[
a \odot (v \odot w) = a \odot v \odot a \odot w
\]

\[
e_\odot \odot v = v
\]

Example Consider the field \((\mathbb{R}, +, \cdot) \) and define an operation on the 3-tuples \((x, y, z) \in \mathbb{R}^3 \) by componentwise addition \((x_1, y_1, z_1) \oplus (x_2, y_2, z_2) = (x_1 + x_2, y_1 + y_2, z_1 + z_2) \) and for \(a \in \mathbb{R} \) let \(a \odot (x_1, y_1, z_1) = (ax_1, ay_1, az_1) \).

Since \(\mathbb{R} \) is closed under addition and multiplication and since the distributive laws hold we have that \(\mathbb{R}^3 \) forms a vector space over \(\mathbb{R} \) with these operations.

The same holds for \(\mathbb{R}^n \) for any integer \(n \). Usually we replace \(+ \) by \(+ \) and omit \(\odot \) in \(\mathbb{R}^n \).

Example The complex numbers \(\mathbb{C} \) form a vector space over the reals \((\mathbb{R}, +, \cdot) \) where the operations are defined as follows:

\(\oplus \) is the standard addition of complex numbers, i.e. \((a + bi) \oplus (c + di) = (a + c) + (b + d)i \), and \(\odot \) is the standard multiplication, i.e. \(a \odot (b + ci) = (a \cdot b) + (a \cdot c)i \), in which the first argument is restricted to \(\mathbb{R} \).

This fulfills the definition since we have already seen that \((\mathbb{R}, +, \cdot) \) and \((\mathbb{C}, +, \cdot) \) are both fields. The last three conditions are automatically satisfied since \(\mathbb{C} \) is a field.

The example of \(\mathbb{C} \) being a vector space over \(\mathbb{R} \) can be generalized to arbitrary extension fields.

Example Let \((K, \odot, \odot) \) be a field and let \(L \supseteq K \) be an extension field of \(K \). Then \(L \) is a vector space over \(K \), where \(\oplus = \odot \) and \(\odot = \odot \).

Example Let \(K \) be a field and consider the polynomial ring \(K[x] \) over \(K \). We define \(\oplus \) to be the coefficientwise addition, i.e. the usual addition in \(K[x] \) and \(\odot \) as the multiplication of each coefficient by a scalar from \(K \), i.e. polynomial multiplication restricted to the case that one input polynomial is constant. Since \(K[x] \) is a ring and \(K \) is a field, \(K[x] \) is a vector space over \(K \).

Example Let \(K \) be a field, \(n \in \mathbb{N} \) and consider the subset \(P_n \) of \(K[x] \) of polynomials of degree at most \(n \), i.e. \(P_n = \{ f(x) \in K[x] \mid \deg(f) \leq n \} \). Since addition of polynomials and multiplication by constants do not increase the degree, \(P_n \) is closed under addition and multiplication by scalars from \(K \) and is thus a \(K \)-vector space.

Definition 3 (Linear combination, basis, dimension)

*Let \(V \) be a vector space over the field \(K \) and let \(v_1, v_2, \ldots, v_n \in V \).

A linear combination of the vectors \(v_1, v_2, \ldots, v_n \) is given by

\[
\sum_{i=1}^{n} \lambda_i \odot v_i,
\]

for some \(\lambda_1, \lambda_2, \ldots, \lambda_n \in K \), where the summation sign stands for repeated application of \(\odot \).

The elements \(v_1, \ldots, v_n \) are linearly independent if \(\sum_{i=1}^{n} \lambda_i \odot v_i = e_\oplus \) implies that for all \(1 \leq i \leq n \) we have \(\lambda_i = e_\oplus \).*
A set \(\{v_1, v_2, \ldots, v_n\} \) is a basis of \(V \) if \(v_1, \ldots, v_n \) are linearly independent and each element can be represented as a linear combination of them, i.e.

\[
V = \left\{ \sum_{i=1}^{n} \lambda_i \odot v_i \mid \lambda_i \in K \right\}.
\]

The cardinality of the basis is the dimension of \(V \), denoted by \(\dim_K(V) \). Note that the dimension can be infinite.

An alternative definition of basis are that \(\{v_1, v_2, \ldots, v_n\} \) is a minimal set of generators, meaning that there are no fewer elements of \(V \) such that each element can be represented as a linear combination of them. Yet another definition states that a basis is a maximal set of linearly independent vectors.

Example Consider the vector space \(\mathbb{R}^3 \). The vectors \((1, 0, 0)\) and \((0, 1, 0)\) are linearly independent since

\[
\lambda_1(1, 0, 0) + \lambda_2(0, 1, 0) = (\lambda_1, \lambda_2, 0) \overbrace{\neq}^{\text{not equal}} (0, 0, 0)
\]

forces \(\lambda_1 = \lambda_2 = 0 \). They do not form a basis since, e.g., the vector \((0, 0, 3)\) cannot be represented as a linear combination of them.

Since \(2(1, 0, 0) = (2, 0, 0)\) the vectors \((1, 0, 0)\) and \((2, 0, 0)\) are linearly dependent.

The vectors \((1, 0, 0), (0, 1, 0), \) and \((1, 3, 0)\) are linearly dependent since a non-trivial linear combination is given by

\[
(1, 0, 0) + 3(0, 1, 0) - (1, 3, 0) = (0, 0, 0).
\]

The vectors \((1, 0, 0), (0, 1, 0), \) and \((0, 0, 1)\) are linearly independent and every other vector \((x, y, z) \in \mathbb{R}^3\) can be represented as a linear combination of them as

\[
(x, y, z) = x(1, 0, 0) + y(0, 1, 0) + z(0, 0, 1).
\]

So we have that a basis of \(\mathbb{R}^3 \) is given by \(\{(1, 0, 0), (0, 1, 0), (0, 0, 1)\} \) and that the dimension is \(\dim_{\mathbb{R}}(\mathbb{R}^3) = 3 \). In general \(\dim_{\mathbb{R}}(\mathbb{R}^n) = n \).

Example We have already seen that the complex numbers form a vector space over the reals. A basis is given by \(\{1, i\} \) and so the dimension is \(\dim_{\mathbb{R}}(\mathbb{C}) = 2 \).

Example Let \(K \) be a field and let \(P_n \subset K[x] \) be the set of polynomials of degree at most \(n \). A basis is given by \(\{1, x, x^2, x^3, \ldots, x^n\} \) and so the dimension is \(\dim_K(P_n) = n + 1 \).

Alternative bases are easy to give. Since \(K \) is a field, \(x^i \) can be replaced by \(a_i x^i \) for any nonzero \(a_i \in K \), also linear combinations are possible. So another basis is given by \(\{5, 3x - 1, -x^2, 2x^3 + x, \ldots, x^n + x^{n-1} + x^{n-2} + \cdots + x + 1\} \), since the degrees are all different and so none can be a linear combination of the others, while using linear algebra we can get every element as a linear combination.

Example \(K[x] \) is a \(K \) vectorspace with \(\dim_K(K[x]) = \infty \).