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Patterns do not find all factors

These primes

c0000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

0000000000000000000000000002030b

c0000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000000000000

00000000000000000000000100000177

were found via GCDs, but not from the patterns.

Looks like base pattern 0 with some bits flipped.
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Coppersmith’s method of finding roots mod n

Assume that prime factor p of n has form

p = a + r ,

a is one of the bit patterns, r is a small integer to account for bit errors
(and incrementing to next prime).

I Define polynomial
f (x) = a + x

I Build matrix from coefficients of f .

I Use LLL algorithm (method for lattice basis reduction)
on this matrix to construct a new polynomial
g(x) where g(r) = 0 over the integers.

I Factoring polynomials over Z is easy.
For all roots ri test if a + ri divides n.

I This lecture uses this method and LLL as a black box,
next looks into when it works.

Tanja Lange RSA X 3



Coppersmith’s method of finding roots mod n

Assume that prime factor p of n has form

p = a + r ,

a is one of the bit patterns, r is a small integer to account for bit errors
(and incrementing to next prime).

I Define polynomial
f (x) = a + x

I Build matrix from coefficients of f .

I Use LLL algorithm (method for lattice basis reduction)
on this matrix to construct a new polynomial
g(x) where g(r) = 0 over the integers.

I Factoring polynomials over Z is easy.
For all roots ri test if a + ri divides n.

I This lecture uses this method and LLL as a black box,
next looks into when it works.

Tanja Lange RSA X 3



Find root r of f (x) = a + x

I Let r ≤ X . We know or guess some bound.
In our case only very few bottom bits changed to reach a prime.

I Construct the matrix M asX 2 Xa 0
0 X a
0 0 n


corresponding to the coefficients of the polynomials
Xxf (Xx), f (Xx), and n.

I Run LLL lattice basis reduction on matrix M.

I Regard the shortest vector as coefficients of polynomial g(Xx).

I Compute the roots ri of g(x) and check if a + ri divides n.
Note: no X here.
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RSA key recovery from partial information

p = random_prime(2^512); q = random_prime(2^512)

n = p*q # nothing suspicious here

a = p - (p % 2^160) # partial info we learn

sage: hex(a)

’5d388fc0902ebe38dcd214d13e5be1c89827c5ac8e91c8a97

3320ada8edc33656846143427abe6eb51fb3d6a00000000000

00000000000000000000000000000’

X = 2^160 # matching p % 2^160 above

M = matrix([[X^2, X*a, 0], [0, X, a], [0, 0, n]])

B = M.LLL()

Q = B[0][0]*x^2/X^2+B[0][1]*x/X+B[0][2]

sage: Q.roots(ring=ZZ)

[(281309904423412535115696871561721270073659798137, 1)]

sage: a+Q.roots(ring=ZZ)[0][0] == p

True
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Factors!

I Ran this one all 164 patterns; about 1h/pattern.

I Factored 160 keys, including 39 previously unfactored keys.

I Found all but 2 of the 103 keys factored with the GCD method.

I Missing 2 keys have factor e0000. . . 0f,
so we included e000 as pattern, but didn’t find more factors.

I Coppersmith can handle more errors than X < p1/3 by using larger
matrices.
Works up to X < p1/2 but gets very expensive.

I See next lecture for math details.

I Generalizations can handle more than one block of errors.

I We found more primes.
Full story at http://smartfacts.cr.yp.to/
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