Elliptic-curve cryptography XI Identification schemes and signatures

Tanja Lange

Eindhoven University of Technology

2MMC10 - Cryptology

P, n known. Alice has published Q = aP as her public key.

Alice (prover)

Bob (verifier)

A commits to

$$r \leftarrow_R \{0, 1, \dots, n-1\} \xrightarrow{R \leftarrow rP} \xrightarrow{h}$$

B picks challenge
$$h \leftarrow_R \{0, 1, \dots, n-1\}$$

$$s \leftarrow r + ha \mod n$$

verifies
$$sP \stackrel{?}{=} R + hQ$$

P, n known. Alice has published Q = aP as her public key.

Alice (prover)

Bob (verifier)

A commits to

$$r \leftarrow_R \{0, 1, \dots, n-1\} \xrightarrow{R \leftarrow rP} \xrightarrow{h}$$

$$h \leftarrow_R \{0, 1, \dots, n-1\}$$

$$s \leftarrow r + ha \mod n$$

verifies
$$sP \stackrel{?}{=} R + hQ$$

Valid choices always verify:

P, n known. Alice has published Q = aP as her public key.

Alice (prover)

Bob (verifier)

$$r \leftarrow_R \{0, 1, \dots, n-1\} \xrightarrow{R \leftarrow rP} h$$

B picks challenge $h \leftarrow_R \{0, 1, \dots, n-1\}$

$$s \leftarrow r + ha \mod n$$

verifies
$$sP \stackrel{?}{=} R + hQ$$

Valid choices always verify: sP = (r + ha)P = R + hQ.

Does this prove that Alice knows a?

P, n known. Alice has published Q = aP as her public key.

Alice (prover)

Bob (verifier)

$$r \leftarrow_R \{0, 1, \dots, n-1\} \xrightarrow{R \leftarrow rP} h$$

B picks challenge
$$h \leftarrow_R \{0, 1, \dots, n-1\}$$

$$s \leftarrow r + ha \mod n$$

verifies
$$sP \stackrel{?}{=} R + hQ$$

Valid choices always verify: sP = (r + ha)P = R + hQ.

Does this prove that Alice knows a?

If she knew h before sending R

P, n known. Alice has published Q = aP as her public key.

Alice (prover)

Bob (verifier)

$$r \leftarrow_R \{0, 1, \dots, n-1\} \xrightarrow{R \leftarrow rP} h$$

B picks challenge
$$h \leftarrow_R \{0, 1, \dots, n-1\}$$

$$s \leftarrow r + ha \mod n$$

verifies
$$sP \stackrel{?}{=} R + hQ$$

Valid choices always verify: sP = (r + ha)P = R + hQ.

Does this prove that Alice knows a?

If she knew h before sending R she could put R = -hQ, s = 0,

P, n known. Alice has published Q = aP as her public key.

Alice (prover)

Bob (verifier)

$$r \leftarrow_R \{0, 1, \dots, n-1\} \xrightarrow{R \leftarrow rP} h$$

B picks challenge $h \leftarrow_R \{0, 1, \dots, n-1\}$

$$s \leftarrow r + ha \mod n$$

verifies
$$sP \stackrel{?}{=} R + hQ$$

Valid choices always verify: sP = (r + ha)P = R + hQ.

Does this prove that Alice knows a?

If she knew h before sending R she could put R=-hQ, s=0, or, less suspicious, pick $s\leftarrow_R\{0,1,\ldots,n-1\}$, put R=sP-hQ.

Consequence 1: Alice has chance 1/n of cheating by guessing h. \checkmark Consequence 2: If for fixed R Alice can answer for challenges $h_1 \neq h_2$ she knows a;

P, n known. Alice has published Q = aP as her public key.

Alice (prover)

Bob (verifier)

$$r \leftarrow_R \{0, 1, \dots, n-1\} \xrightarrow{R \leftarrow rP} \xrightarrow{h}$$

B picks challenge
$$h \leftarrow_R \{0, 1, \dots, n-1\}$$

verifies $sP \stackrel{?}{=} R + hQ$

$$s \leftarrow r + ha \mod n$$

Valid choices always verify:
$$sP = (r + ha)P = R + hQ$$
.

Does this prove that Alice knows a?

If she knew h before sending R she could put R = -hQ, s = 0, or, less suspicious, pick $s \leftarrow_R \{0, 1, \dots, n-1\}$, put R = sP - hQ.

Consequence 1: Alice has chance 1/n of cheating by guessing h. \checkmark Consequence 2: If for fixed R Alice can answer for challenges $h_1 \neq h_2$ she knows a; but doing so reveals a. (see exercises). Consequence 3: Bob does not learn anything about a as he could have produced the "transcript" [R, h, s] without Alice. \checkmark

P, n known. Alice has published Q = aP as her public key.

Alice (prover)

Bob (verifier)

A commits to
$$r \leftarrow_R \{0, 1, \dots, n-1\}$$
 $\xrightarrow{R \leftarrow rP}$ \xrightarrow{B} picks challenge $h \leftarrow_R \{0, 1, \dots, n-1\}$ $s \leftarrow r + ha \mod n$ \xrightarrow{S} verifies $sP \stackrel{?}{=} R + hQ$

Valid choices always verify: sP = (r + ha)P = R + hQ.

Does this prove that Alice knows a?

If she knew h before sending R she could put R = -hQ, s = 0, or, less suspicious, pick $s \leftarrow_R \{0, 1, \dots, n-1\}$, put R = sP - hQ.

Consequence 1: Alice has chance 1/n of cheating by guessing h. \checkmark Consequence 2: If for fixed R Alice can answer for challenges $h_1 \neq h_2$ she knows a; but doing so reveals a. (see exercises). Consequence 3: Bob does not learn anything about a as he could have produced the "transcript" [R, h, s] without Alice.

P, n known. Alice has published Q = aP as her public key.

Alice (prover)

Bob (verifier)

A commits to

Signatures are non-interactive. Alice signs message m.

Bob later verifies signature, obtains proof that a was used.

P, n known. Alice has published Q = aP as her public key.

Alice (prover)

Bob (verifier)

A commits to

$$r \leftarrow_R \{0, 1, \dots, n-1\}$$
 $\xrightarrow{\qquad \qquad \qquad }$ $\xrightarrow{\qquad \qquad \qquad }$ $\xrightarrow{\qquad \qquad \qquad }$ $\xrightarrow{\qquad \qquad \qquad }$ $\xrightarrow{\qquad \qquad }$

Signatures are non-interactive. Alice signs message m.

Bob later verifies signature, obtains proof that a was used.

Let Alice choose *h*?!

P, n known. Alice has published Q = aP as her public key.

Alice (prover)

Bob (verifier)

A commits to

$$r \leftarrow_R \{0, 1, \dots, n-1\}$$
 $\xrightarrow{\qquad \qquad \qquad }$ $\xrightarrow{\qquad \qquad \qquad }$ $\xrightarrow{\qquad \qquad \qquad }$ $\xrightarrow{\qquad \qquad \qquad }$ $\xrightarrow{\qquad \qquad }$

Signatures are non-interactive. Alice signs message m.

Bob later verifies signature, obtains proof that \boldsymbol{a} was used.

Let Alice choose h?! Enforce choice of h = H(m) using hash function H.

P, n known. Alice has published Q = aP as her public key.

Alice (prover)

Bob (verifier)

A commits to

Signatures are non-interactive. Alice signs message m. Bob later verifies signature, obtains proof that a was used.

Let Alice choose h?! Enforce choice of h = H(m) using hash function H. Still a problem: she knows h before committing to R.

P, n known. Alice has published Q = aP as her public key.

Alice (prover)

Bob (verifier)

A commits to

$$r \leftarrow_R \{0, 1, \dots, n-1\}$$
 $\xrightarrow{\qquad \qquad \qquad }$ $\xrightarrow{\qquad \qquad \qquad }$ $\xrightarrow{\qquad \qquad \qquad }$ $\xrightarrow{\qquad \qquad \qquad }$ $\xrightarrow{\qquad \qquad }$

Signatures are non-interactive. Alice signs message m. Bob later verifies signature, obtains proof that a was used.

Let Alice choose h?! Enforce choice of h = H(m) using hash function H. Still a problem: she knows h before committing to R. Enforce order of choices by putting h = H(R, m)

P, n known. Alice has published Q = aP as her public key.

Alice (prover)

Bob (verifier)

A commits to

Signatures are non-interactive. Alice signs message *m*.

Bob later verifies signature, obtains proof that \boldsymbol{a} was used.

Let Alice choose h?! Enforce choice of h = H(m) using hash function H. Still a problem: she knows h before committing to R. Enforce order of choices by putting h = H(R, m)

Sign: Signature is (R, s)

$$r \leftarrow_R \{0, 1, \dots, n-1\}, R \leftarrow rP, h \leftarrow H(R, m), s \leftarrow r + ha \mod n.$$

Verify: $sP \stackrel{?}{=} R + hQ$.

Tanja Lange

EdDSA - Ed25519

Let $p = 2^{255} - 19$, d = -121665/121666 and

$$E: -x^2 + y^2 = 1 + dx^2y^2.$$

Base point P has prime order ℓ , $|E(\mathbf{F}_p)| = 8\ell$.

Scheme follows Schnorr, with some improvements:

- Put h = H(R, Q, m) to reduce multi-target attacks.
- Verify 8sP = 8R + 8hQ to deal with cofactor (can also check without 8).
- Choose r pseudorandomly to avoid issues with bad randomness.

Similar setup, different equation for s.

More expensive due to inversions modulo n.

Mostly result of patent avoidance (Schnorr patent expired by now).

Sign: Signature is (R', s) $r \leftarrow_R \{0, 1, \ldots, n-1\}, R \leftarrow rP, R' \leftarrow x(R) \mod n$, (R' is x-coordinate of R taken as integer, then reduced modulo n) $s \leftarrow r^{-1}(H(m) + R'a) \mod n$.

Verify: $w_1 \leftarrow s^{-1}H(m) \mod n$ and $w_2 \leftarrow s^{-1} \cdot R' \mod n$. Check $x(w_1P + w_2Q) \equiv R' \mod n$

Similar setup, different equation for s.

More expensive due to inversions modulo n.

Mostly result of patent avoidance (Schnorr patent expired by now).

Sign: Signature is (R', s) $r \leftarrow_R \{0, 1, \ldots, n-1\}, R \leftarrow rP, R' \leftarrow x(R) \mod n$, (R' is x-coordinate of R taken as integer, then reduced modulo n) $s \leftarrow r^{-1}(H(m) + R'a) \mod n$.

Verify: $w_1 \leftarrow s^{-1}H(m) \mod n$ and $w_2 \leftarrow s^{-1} \cdot R' \mod n$. Check $x(w_1P + w_2Q) \equiv R' \mod n$

Alice's signature is valid:

$$w_1P + w_2Q =$$

Similar setup, different equation for s.

More expensive due to inversions modulo n.

Mostly result of patent avoidance (Schnorr patent expired by now).

Sign: Signature is (R', s) $r \leftarrow_R \{0, 1, \dots, n-1\}, R \leftarrow rP, R' \leftarrow x(R) \mod n$, (R' is x-coordinate of R taken as integer, then reduced modulo n) $s \leftarrow r^{-1}(H(m) + R'a) \mod n$.

Verify: $w_1 \leftarrow s^{-1}H(m) \mod n$ and $w_2 \leftarrow s^{-1} \cdot R' \mod n$. Check $x(w_1P + w_2Q) \equiv R' \mod n$

Alice's signature is valid:

$$w_1P + w_2Q = (s^{-1}H(m))P + (s^{-1} \cdot R')Q = (s^{-1}(H(m) + R'a))P = rP$$
, and so the x-coordinate of this expression equals $R' \equiv x(rP) \mod n$.

Similar setup, different equation for s.

More expensive due to inversions modulo n.

Mostly result of patent avoidance (Schnorr patent expired by now).

Sign: Signature is (R', s) $r \leftarrow_R \{0, 1, \ldots, n-1\}, R \leftarrow rP, R' \leftarrow x(R) \mod n$, (R' is x-coordinate of R taken as integer, then reduced modulo n) $s \leftarrow r^{-1}(H(m) + R'a) \mod n$.

Verify: $w_1 \leftarrow s^{-1}H(m) \mod n$ and $w_2 \leftarrow s^{-1} \cdot R' \mod n$. Check $x(w_1P + w_2Q) \equiv R' \mod n$

Alice's signature is valid:

$$w_1P + w_2Q = (s^{-1}H(m))P + (s^{-1} \cdot R')Q = (s^{-1}(H(m) + R'a))P = rP$$
, and so the x-coordinate of this expression equals $R' \equiv x(rP) \mod n$.

Similar fragility about reuse of r, see PS3 Epic Fail (talk at 27C3). r called a "nonce": number used only once.