An introduction to the algorithmic of p-adic numbers

David Lubicz ${ }^{1}$

${ }^{1}$ Universté de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France

Outline

(9) Introduction
(2) Basic definitions
(3) First properties

4 Field extensions
(5) Newton lift

6 Algorithmic p-adic integers
(7) Basic operations
(8) A point counting algorithm

When do we need p-adic numbers?

- In elliptic curve cryptography, most of time, the important objects to manipulate are finite fields \mathbb{F}_{q}.
- Sometimes, we would like to use formulas coming from the classical theory of elliptic curves over \mathbb{C} but they have no meaning in characteristic p because for instance they imply the evaluation of $1 / p$.

Cryptographic applications

Main cryptographic applications of p-adic numbers :

- point counting algorithms;
- CM-methods;
- isogeny computations.

What are the p-adic numbers?

A dictionary :

Function fields	Number theory
$\mathbb{C}[X]$	\mathbb{Z}
$\mathbb{C}(X)$	\mathbb{Q}
a monomial $(X-\alpha)$	p prime
finite extension of $\mathbb{C}(X)$	finite extension of \mathbb{Q}
Laurent series about α	p-adic numbers

Construction of p-adic numbers I

Let p be a prime, let $A_{n}=\mathbb{Z} / p^{n} \mathbb{Z}$. We have a natural morphism

$$
\phi: A_{n} \rightarrow A_{n-1}
$$

provided by the reduction modulo p^{n-1}. The sequence

$$
\ldots A_{n} \rightarrow A_{n-1} \rightarrow \ldots \rightarrow A_{2} \rightarrow A_{1}
$$

is an inverse system.

Definition

The ring of p-adic numbers is by definition $\mathbb{Z}_{p}=\lim \left(A_{n}, \phi_{n}\right)$.

Construction of p-adic numbers II

- An element of $a=\mathbb{Z}_{p}$ can be represented as a sequence of elements

$$
a=\left(a_{1}, a_{2}, \ldots, a_{n}, \ldots\right)
$$

with $a_{i} \in \mathbb{Z} / p^{i} \mathbb{Z}$ and $a_{i} \bmod p^{i-1}=a_{i-1}$. The ring structure is the one inherited from that of $\mathbb{Z} / p^{i} \mathbb{Z}$.

- The neutral element is $(1, \ldots, 1, \ldots)$.
- There exists natural projections $p_{i}: \mathbb{Z}_{p} \rightarrow \mathbb{Z} / p^{i} \mathbb{Z}$, $a \mapsto a_{i}=a \bmod p^{i}$.

First properties I

Proposition

- Let $x \in \mathbb{Z}_{p}, x$ is invertible if and only if $x \bmod p$ is invertible. Let $x \in \mathbb{Z}_{p}$, there exists a unique (u, n) where u is an invertible element of \mathbb{Z}_{p} and n a positive integer such that

$$
x=p^{n} u
$$

- The integer n is called the valuation of x and denoted by $v(x)$.

First properties II

- \mathbb{Z}_{p} is a characteristic 0 ring;
- \mathbb{Z}_{p} is integral;
- \mathbb{Z}_{p} has a unique maximal ideal $\mathscr{O}_{p}=\left\{x \in \mathbb{Z}_{p} \mid v(x)>0\right\}$;
- There is a canonical isomorphism $\mathbb{Z}_{p} / \mathscr{O}_{p} \simeq \mathbb{F}_{p}$.

The field of p-adics

Definition

The field of p-adic numbers noted \mathbb{Q}_{p} is by definition the field of fractions of \mathbb{Z}_{p}.

- The valuation of \mathbb{Z}_{p} extend immediately to \mathbb{Q}_{p} by letting

$$
v(x / y)=v(x)-v(y) \text { for } x, y \in \mathbb{Z}_{p}
$$

- \mathbb{Q}_{p} comes with a norm called the p-adic norm given by $|x|_{\mathbb{Q}_{p}}=p^{-v(x)}$.

Representation as a series I

Definition

- An element $\pi \in \mathbb{Z}_{p}$ is called a uniformizing element if

$$
v(\pi)=1
$$

- Let p_{1} be the canonical projection from \mathbb{Z}_{p} to \mathbb{F}_{p}. A map $\omega: \mathbb{F}_{p} \rightarrow \mathbb{Z}_{p}$ is a system of representatives of \mathbb{F}_{p} if for all $x \in \mathbb{F}_{p}$ we have $p_{1}(\omega(x))=x$.

Definition

An element $x \in \mathbb{Z}_{p}$ is called a lift of an element $x_{0} \in \mathbb{F}_{p}$ if $p_{1}(x)=x_{0}$. Consequently, for all $x \in \mathbb{F}_{p}, \omega(x)$ is a lift of x.

Representation as a series II

Let π be a uniformizing element of \mathbb{Z}_{p}, ω a system of representatives of \mathbb{F}_{p} in \mathbb{Z}_{p} and $x \in \mathbb{Z}_{p}$. Let $n=v(x)$, then x / π^{n} is an invertible element of \mathbb{Z}_{p} and there exists a unique $x_{n} \in \mathbb{F}_{p}$ such that $v\left(x-\pi^{n} \omega\left(x_{n}\right)\right)=n+1$. Iterating this process, we obtain that

Proposition

There exists a unique sequence $\left(x_{i}\right)_{i \geqslant 0}$ of elements of \mathbb{F}_{p} such that

$$
x=\sum_{i=0}^{\infty} \omega\left(x_{i}\right) \pi^{i}
$$

Field extensions I

- Let K be a finite extension of \mathbb{Q}_{p} defined by an irreducible polynomial $m \in \mathbb{Q}_{p}[X]$.
- There exists a unique norm $|\cdot|_{K}$ on K extending the p-adic norm on \mathbb{Q}_{p}.
- $\mathcal{R}=\left\{\left.x \in K| | x\right|_{K} \leq 1\right\}$ is the valuation ring of K.
- $\mathcal{M}=\left\{\left.x \in \mathcal{R}| | x\right|_{K}<1\right\}$ is be the unique maximal ideal of \mathcal{R}.

Field extension II

Definition

Keeping the notation from above :

- The field $\mathbb{F}_{q}=\mathcal{R} / \mathcal{M}$ is an algebraic extension of \mathbb{F}_{p}, the degree of which is called the inertia degree of K and is denoted by f.
- The absolute ramification index of K is the integer $e=v_{K}(\psi(p))$, where $\psi: \mathbb{Z} \rightarrow K$ is the canonical embedding of \mathbb{Z} into K.

Unramified extensions I

We have the
Theorem
Let d be the degree of K / \mathbb{Q}_{p}, then $d=e f$.

Definition

Let K / \mathbb{Q}_{p} be a finite extension. Then K is called absolutely unramified if $e=1$. An absolutely unramified extension of degree d is denoted by \mathbb{Q}_{q} with $q=p^{d}$ and its valuation ring by \mathbb{Z}_{q}.

Unramified extensions II

Proposition

- Let K be a finite extension of \mathbb{Q}_{p} defined by an irreducible polynomial $m \in \mathbb{Q}_{p}[X]$.
- Denote by P_{1} the reduction morphism $\mathcal{R}[X] \rightarrow \mathbb{F}_{q}[X]$ induced by p_{1} and let \bar{m} be the irreducible polynomial defined by $P_{1}(m)$.
- The extension K / \mathbb{Q}_{p} is absolutely unramified if and only if $\operatorname{deg} m=\operatorname{deg} \bar{m}$. Let $d=\operatorname{deg} \bar{m}$ and $\mathbb{F}_{q}=\mathbb{F}_{p^{d}}$ the finite field defined by \bar{m}, then we have $p_{1}(\mathcal{R})=\mathbb{F}_{q}$.

Unramified extensions III

The classification of unramified extension is given by their degree.

Proposition

Let K_{1} and K_{2} be two unramified extensions of \mathbb{Q}_{p} defined respectively by m_{1} and m_{2} then $K_{1} \simeq K_{2}$ if and only if $\operatorname{deg} m_{1}=\operatorname{deg} m_{2}$.

Unramified extensions IV

The Galois properties of unramified extensions of \mathbb{Q}_{p} is the same as that of finite fields.

Proposition

An unramified extension K of \mathbb{Q}_{p} is Galois and its Galois group is cyclic generated by an element Σ that reduces to the Frobenius morphism on the residue field. We call this automorphism the Frobenius substitution on K.

Lefschetz principle I

The field \mathbb{Q}_{p} and its unramified extensions enjoy several important properties:

- Their Galois groups reflect the structure of finite field extensions;
- Their are big enough to be characteristic 0 fields...
- ...but small enough so that there exists an field morphism $K \rightarrow \mathbb{C}$ for any K finite extension of \mathbb{Q}_{p}.
- Warning : $\mathbb{Q}_{p} / \mathbb{Q}$ is NOT an algebraic extension.

Lefschetz principle II

The so-called Lefschetz principle consists in

- lifting objects defined over finite fields over the p-adics,
- then embedding the p-adics into \mathbb{C} where we can obtain algebraic relations using analytic methods,
- and then interpret these relations over finite fields by reduction modulo p.

Newton lift I

Proposition

Let K be an unramified extension of \mathbb{Q}_{p} with valuation ring \mathcal{R} and norm $|\cdot|_{k}$. Let $f \in \mathcal{R}[X]$ and let $x_{0} \in \mathcal{R}$ be such that

$$
\left.\left|f\left(x_{0}\right)\right|\right|_{K}<\left|f^{\prime}\left(x_{0}\right)\right|_{K}^{2}
$$

then the sequence

$$
\begin{equation*}
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} \tag{1}
\end{equation*}
$$

converges quadratically towards a zero of f in \mathcal{R}.

Newton lift II

- The quadratic convergence implies that the precision of the approximation nearly doubles at each iteration.
- More precisely, let $k=v_{K}\left(f^{\prime}\left(x_{0}\right)\right)$ and let x be the limit of the sequence (1). Suppose that x_{i} is an approximation of x to precision n, i.e. $v_{K}\left(x-x_{i}\right) \geq n$, then
$x_{i+1}=x_{i}-f\left(x_{i}\right) / f^{\prime}\left(x_{i}\right)$ is an approximation of x to precision $2 n-k$.

Hensel lift

Lemma (Hensel)

Let f, A_{k}, B_{k}, U, V be polynomials with coefficients in \mathcal{R} such that

- $f \equiv A_{k} B_{k}\left(\bmod \mathcal{M}^{k}\right)$,
- $U(X) A_{k}(X)+V(X) B_{k}(X)=1$, with A_{k} monic and $\operatorname{deg} U(X)<\operatorname{deg} B_{k}(X)$ and $\operatorname{deg} V(X)<\operatorname{deg} A_{k}(X)$
then there exist polynomials A_{k+1} and B_{k+1} satisfying the same conditions as above with k replaced by $k+1$ and

$$
A_{k+1} \equiv A_{k} \quad\left(\bmod \mathcal{M}^{k}\right), \quad B_{k+1} \equiv B_{k} \quad\left(\bmod \mathcal{M}^{k}\right) .
$$

Representation of p - adic integers

- In practice, one computes with p-adic integers up to some precision N.
- An element $a \in \mathbb{Z}_{p}$ is approximated by $p_{N}(a) \in \mathbb{Z} / p^{N}$ Z.
- The arithmetic reduces to the arithmetic modulo p^{N}.
- For a given precision N, each element takes $O(N \log p)$ space.

Polynomial representation I

- Let \mathbb{Q}_{q} be the unramified extension of \mathbb{Q}_{p} of degree d. By proposition $3, \mathbb{Q}_{q}$ is defined by any polynomial $M[X] \in \mathbb{Z}_{p}[X]$ such that $m=P_{1}(M) \in \mathbb{F}_{p}[X]$ is an irreducible degree d polynomial. We can assume that M is monic.
- As a consequence every $a \in \mathbb{Q}_{q}$ can be written as $a=\sum_{i=0}^{d-1} a_{i} X^{i}$ with $a_{i} \in \mathbb{Q}_{p}$ and every $b \in \mathbb{Z}_{q}$ can be written as $b=\sum_{i=0}^{d-1} b_{i} X^{i}$ with $b_{i} \in \mathbb{Z}_{p}$.
- In order to make the reduction modulo M very fast, we choose M sparse.

Polynomial representation II

- In general, we work with \mathbb{Z}_{q} up to precision N.
- This can be done by computing in $(\mathbb{Z} / N \mathbb{Z})[X] /\left(M_{N}\right)$ where M_{N} is the reduction of M modulo p^{N}.
- The size of an object is $O(d N \log (p))$.

Polynomials representation III

Two common choices to speed up arithmetic in \mathbb{Z}_{q} :

- sparse modulus representation : we deduce M by lifting in a trivial way the coefficients of m. The reduction modulo M of a polynomial of degree less than $2(d-1)$ takes $d(w-1)$ multiplication of a $\mathbb{Z} / N \mathbb{Z}$ element by a small integer and $d w$ subtractions in \mathbb{Z}_{p} where w is the number of non zero coefficients in M.
- Teichmüller modulus representation: We define M as the unique polynomial over \mathbb{Z}_{p} such that $M(X) \mid X^{q}-X$ and $M(X) \bmod p=m(X)$. In this representation we have $\Sigma(X)=X^{p}$.

Multiplication I

- The arithmetic in \mathbb{Z}_{p} with precision N is the same thing as the arithmetic in $\mathbb{Z} / p^{N} \mathbb{Z}$.
- The multiplication of two elements of \mathbb{Z}_{p} takes $O\left(N^{\mu}\right)$ where μ is the exponent in the multiplication estimate of two integers $(\mu=1+\epsilon$ with FFT, $\mu=\log 3$ with Karatsuba, and $\mu=2$ with school book method);

Multiplication II

- The multiplications of two elements of \mathbb{Z}_{q} is equivalent to the multiplication of two polynomials in $(\mathbb{Z} / N \mathbb{Z})[X]$ which take $O\left(d^{\nu} N^{\mu}\right)$ time (here ν is the exponent of the complexity function for the multiplication of two polynomials).
- In all the complexity of the multiplication of two p-adics is $O\left(d^{\nu} N^{\mu}\right)$.

Computing inverse with Newton lift

In order to inverse $a \in \mathbb{Z}_{q}$ can be done by

- computing an inverse of $p_{1}(a) \in \mathbb{F}_{q}$;
- taking any lift $z_{1} \in \mathbb{Z}_{q}$ of $1 / p_{1}(a) \in \mathbb{F}_{q}$;
- z_{1} is an approximation to precision 1 of the root of the polynomial $f(X)=1-a X$;
- lifting the root z_{1} to a given precision with Newton.

Computing inverse with Newton lift

Inverse

Input: A unit $a \in \mathbb{Z}_{q}$ and a precision N
Output: The inverse of a to precision N
(1) If $N=1$ Then
(2) $\mathrm{z} \leftarrow 1 / a \bmod p$
(3) Else
(4) $z \leftarrow \operatorname{Inverse}\left(a,\left\lceil\frac{N}{2}\right\rceil\right)$
(5) $z \leftarrow z+z(1-a z) \bmod p^{N}$
(6) Return z

Computing inverse with Newton lift

- We go through the $\log (N)$ iterations;
- The dominant operation is a multiplication of elements of \mathbb{Z}_{q} with precision N : this can be done in $O\left(d^{\nu} N^{\mu}\right)$ time;
- The overall complexity is $O\left(\log (N) d^{\nu} N^{\mu}\right)$.

Computing square root with Newton lift

- In the same way it, one can compute the inverse square root of $a \in \mathbb{Z}_{q}$ to precision N in time $O\left(\log (N) d^{\nu} N^{\mu}\right)$;
- Principle: compute the square root $\bmod p$ and then do a Newton lift with the polynomial $f(X)=1-a X^{2}$;
- For a reference ([CFA $\left.{ }^{+} 06\right]$ pp. 248).

The AGM algorithm I

Elliptic curve AGM

Input: An ordinary elliptic curve $E: y^{2}+x y=x^{3}+\bar{c}$ over $\mathbb{F}_{2^{d}}$ with $j(E) \neq 0$.
Output: The number of points on $E\left(\mathbb{F}_{2^{d}}\right)$.
(1) $N \leftarrow\left\lceil\frac{d}{2}\right\rceil+3$
(2) $a \leftarrow 1$ and $b \leftarrow(1+8 c) \bmod 2^{4}$
(3) For $i=5$ To N Do
(4) $(a, b) \leftarrow((a+b) / 2, \sqrt{a b}) \bmod 2^{i}$
(5) $a_{0} \leftarrow a$

The AGM algorithm II

(1) For $i=0$ To $d-1$ Do
(2) $(a, b) \leftarrow((a+b) / 2, \sqrt{a b}) \bmod 2^{N}$
(3) $t \leftarrow \frac{a_{0}}{a} \bmod 2^{N-1}$
(4) If $t^{2}>2^{d+2}$ Then $t \leftarrow t-2^{N-1}$
(5) Return $2^{d}+1-t$

Complexity of the AGM algorithm

- You know everything you need to see that the complexity is quasi-cubic.

The End

- Thank you for your attention.
- Any question?

Renri Cohen, Gerhard Frey, Roberto Avanzi, Christophe Doche, Tanja Lange, Kim Nguyen, and Frederik Vercauteren, editors.
Handbook of elliptic and hyperelliptic curve cryptography. Discrete Mathematics and its Applications (Boca Raton). Chapman \& Hall/CRC, Boca Raton, FL, 2006.

Neal Koblitz.
p-adic numbers, p-adic analysis, and zeta-functions, volume 58 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1984.

圊 Alain M. Robert.

A course in p-adic analysis, volume 198 of Graduate Texts in Mathematics.
Springer-Verlag, New York, 2000.
國 J.-P. Serre.
A course in arithmetic.
Springer-Verlag, New York, 1973.
Translated from the French, Graduate Texts in Mathematics, No. 7.

圆 Jean-Pierre Serre.
Local fields, volume 67 of Graduate Texts in Mathematics.
Springer-Verlag, New York, 1979.
Translated from the French by Marvin Jay Greenberg.

