Counting points on elliptic curves over \mathbf{F}_q

Christiane Peters

DIAMANT-Summer School on Elliptic and Hyperelliptic Curve Cryptography September 17, 2008

Motivation

Given an elliptic curve E over a finite field \mathbf{F}_q .

Is the Discrete Logarithm Problem hard on E?

One criterion for hardness: Group order $\#E(\mathbf{F}_q)$ divisible by a large prime factor.

Short introductory notes

Schoof (1983): first polynomial-time algorithm for point counting.

late 80s/early 90s: Elkies and Atkin come up with speed-ups; leads to SEA (Schoof-Elkies-Atkin) algorithm.

mid-90s: lots of speed-ups, characteristic-2 algorithms

note: basic Schoof algorithm also applicable for hyperelliptic curves; see Eric Schost's talk next week at ECC

1. Introduction

2. Schoof's algorithm

3. Computing in the torsion group

4. Improvements by Elkies

Elliptic curves over \mathbf{F}_q

Let $q = p^r$ for a prime $p \ge 5$.

Given $A, B \in \mathbf{F}_q$ with $4A^3 + 27B^2 \neq 0$. The zero set of

$$Y^2 = X^3 + AX + B$$

with the point \mathcal{P}_{∞} at infinity forms an elliptic curve.

Multiplication map

Let $m \in \mathbb{Z}$. If m > 0: $[m](P) = \underbrace{P + \dots + P}_{m \text{ times}}$,

If m < 0:

$$[m](P) = [-m](-P).$$

 $[0]: E \to E, \, [0](P) = \mathcal{P}_\infty$ is the constant map and [1] the identity.

The *m*-torsion group contains all points of order divisible by m:

$$E[m] = \{P \in E : [m](P) = \mathcal{P}_{\infty}\}.$$

Frobenius Endomorphism

The map

$$\pi: E \to E, \qquad (x, y) \mapsto (x^q, y^q)$$

is called Frobenius endomorphism.

We call a point (x, y) on $E \mathbf{F}_q$ -rational if and only if

$$\pi(x,y) = (x,y).$$

We denote the rational points of E by $E(\mathbf{F}_q)$.

In particular

$$E(\mathbf{F}_q) = \ker([1] - \pi).$$

The number of rational points

Denote the number of rational points of E by $\#E(\mathbf{F}_q)$.

Trivial bound $#E(\mathbf{F}_q) \le 2q + 1$: check for all $x \in \mathbf{F}_q$ whether $x^3 + Ax + B$ is a square in \mathbf{F}_q .

Recall Legendre symbol:

$$\left(\frac{a}{q}\right) = \begin{cases} -1 & \text{if } a \text{ is a non-square in } \mathbf{F}_q, \\ 0 & \text{if } a = 0 \text{ in } \mathbf{F}_q, \\ 1 & \text{if } a \text{ is a square in } \mathbf{F}_q. \end{cases}$$

We get

$$#E(\mathbf{F}_q) = 1 + \sum_{x \in \mathbf{F}_q} \left(1 + \left(\frac{x^3 + Ax + B}{q} \right) \right).$$

Hasse's bound

The Frobenius endomorphism satisfies the following characteristic equation over \mathbf{Z} .

$$\pi^2 - t \ \pi + q = 0.$$

The integer t is called the trace of the Frobenius endomorphism. It satisfies

۹

$$#E(\mathbf{F}_q) = 1 + q - t.$$

۲

 $|t| \le 2\sqrt{q}.$

1. Introduction

2. Schoof's algorithm

3. Computing in the torsion group

4. Improvements by Elkies

The idea

Hasse:
$$\#E(\mathbf{F}_q) = q + 1 - t$$
 with $|t| \le 2\sqrt{q}$.

Let L be minimimal among all primes which satisfy

$$\prod_{\substack{\ell \text{ prime} \\ 2 < \ell \leq L}} \ell > 4\sqrt{q}.$$

Then the Chinese Remainder Theorem gives a unique t satisfying

$$t \mod \prod \ell \in [-2\sqrt{q}, 2\sqrt{q}].$$

Prime number theorem: Need only $\mathcal{O}(\log q)$ primes ℓ .

Determine $t \mod \ell$

The restriction of the Frobenius endomorphism π to $E[\ell]$ satisfies

$$\pi^2 - t'\pi + q' = 0$$

where $t' = t \mod \ell$ and $q' = q \mod \ell$ are uniquely determined.

Let $P \in E[\ell]$. 1. Compute $R = \pi(P)$ and $Q = \pi^2(P) + [q']P$ in $E[\ell]$. 2. Check which $t' \in \{0, 1, \dots, \ell - 1\}$ satisfies

$$Q = [t']R.$$

1. Introduction

2. Schoof's algorithm

3. Computing in the torsion group

4. Improvements by Elkies

Division polynomials

Torsion group $E[m] = \{P \in E : [m](P) = \mathcal{P}_{\infty}\}$. If gcd(q, m) = 1 we have

$$E[m] \cong (\mathbf{Z}/m\mathbf{Z}) \times (\mathbf{Z}/m\mathbf{Z}).$$

Let $m \ge 1$. The ℓ th division polynomial $\psi_{\ell} \in \mathbf{F}_q[X, Y]$ vanishes in all ℓ -torsion points, i.e.,

for P = (x, y) in $E(\bar{\mathbf{F}}_q)$, $P \notin E[2]$

$$\ell P = \mathcal{P}_{\infty} \Leftrightarrow \psi_{\ell}(x, y) = 0.$$

Recursion for $\psi_m(X, Y)$

Given $E: Y^2 = X^3 + AX + B$ over \mathbf{F}_q .

$$\begin{split} \psi_1 &= 1, \\ \psi_2 &= 2Y, \\ \psi_3 &= 3X^4 + 6AX^2 + 12BX - A^2, \\ \psi_4 &= 4Y(X^6 + 5AX^4 + 20BX^3 - 5A^2X^2 - 4ABX - 8B^2 - A^3) \end{split}$$

and

$$\begin{array}{rcl} \psi_{2m+1} &=& \psi_{m+2}\,\psi_m^3 - \psi_{m+1}^3\,\psi_{m-1} & \qquad \mbox{if } m \geq 2, \\ 2Y\psi_{2m} &=& \psi_m\,(\psi_{m+2}\,\psi_{m-1}^2 - \psi_{m-2}\,\psi_{m+1}^2) & \qquad \mbox{if } m \geq 3. \end{array}$$

Let gcd(m,q) = 1.

- For odd m we have $\psi_m \in \mathbf{F}_q[X]$ with $\deg_X(\psi_m) = (m^2 1)/2$.
- For even m we have $\psi_m \in Y \mathbf{F}_q[X]$ with $\deg_X(\psi_m) = (m^2 4)/2$. (replace all powers of Y by the curve equation.)

Multiplication map revisited

Theorem For $m \ge 3$ $[m](x,y) = \left(x - \frac{\psi_{m-1}\psi_{m+1}}{\psi_m^2}, \frac{\psi_{m+2}\psi_{m-1}^2 - \psi_{m-2}\psi_{m+1}^2}{4y\psi_m^3}\right).$

Note: this shows that [m] is a rational map.

Compute in a polynomial ring

Check equality $\pi^2(P) + [q](P) = [t](P)$ in $E[\ell]$ by looking at the polynomials corresponding to the *x*-coordinates of the point on the left and right side, resp.

We compute the trace t modulo ℓ in the ring

$$\mathcal{R}_{\ell} = \mathbf{F}_q[X, Y] / (Y^2 - X^3 - AX - B, \psi_{\ell}(X))$$

If we want to check if $p_1(X) = p_2(X)$ in \mathcal{R}_ℓ for two polynomials $p_1(X), p_2(X)$ we check whether

$$\gcd(p_1 - p_2, \psi_\ell) \neq 1.$$

Exercise Given a point (x, y) on a curve in Weierstrass form. You can write y^q as h(x)y in \mathcal{R}_{ℓ} . Determine $h(x) \in \mathbf{F}_q[x]$.

Example

Consider the curve $E: Y^2 = X^3 + 31X - 12$ in \mathbf{F}_q with q = 97.

Determine the trace of π modulo $\ell = 5$.

The 5th division polynomial ψ_5 is given by $5x^{12} - 18x^{10} - x^9 - 25x^8 - 40x^7 - 39x^6 + 7x^5 + 3x^4 - 14x^3 + 26x^2 + 40x + 47$

Given a point P = (x, y) in E[5] we work in $\mathcal{R}_5 = \mathbf{F}_{97}[x, y]/(y^2 - x^3 - 31x + 12, \psi_5(x)).$

Computing in \mathcal{R}_5

$$\begin{split} \pi(x,y) &= \\ [47\,x^{11} + 11\,x^{10} - 16\,x^9 + 8\,x^8 + 44\,x^7 + 8\,x^6 + 10\,x^5 + 12\,x^4 - \\ 40\,x^3 + 42\,x^2 + 11\,x + 26, \\ (6\,x^{11} + 45\,x^{10} + 34\,x^9 + 28\,x^8 - 11\,x^7 + 3\,x^6 - 3\,x^5 + 2\,x^4 - 39\,x^3 - \\ 48\,x^2 - x - 9)y]. \end{split}$$

$$\begin{aligned} \pi^2(x,y) &= \\ [-17\,x^{11} + 2\,x^{10} - 25\,x^9 - x^8 + 28\,x^7 + 31\,x^6 + 25\,x^5 - 32\,x^4 + \\ 45\,x^3 + 26\,x^2 + 36\,x + 34, \\ (34\,x^{11} + 35\,x^{10} - 8\,x^9 - 11\,x^8 - 48\,x^7 + 34\,x^6 - 8\,x^5 - 37\,x^4 - \\ 21\,x^3 + 40\,x^2 + 11\,x + 48)y]. \end{aligned}$$

 $\begin{array}{l} [q \mod 5](x,y) = [2](x,y) = \\ [22\,x^{11} + 17\,x^{10} + 18\,x^9 + 40\,x^8 + 41\,x^7 - 13\,x^6 + 30\,x^5 + 11\,x^4 - \\ 38\,x^3 + 7\,x^2 + 20\,x + 17, \\ (-11\,x^{10} - 17\,x^9 - 48\,x^8 - 12\,x^7 + 17\,x^6 + 44\,x^5 - 10\,x^4 + 8\,x^3 + \\ 38\,x^2 + 25\,x + 24)y] \end{array}$

Find t such that $\pi^2(x,y) + [2](x,y) = [t]\pi(x,y)$

 $\begin{aligned} &\pi^2(x,y) + [2]P = \\ &[-14\,x^{14} + 15\,x^{13} - 20\,x^{12} - 43\,x^{11} - 10\,x^{10} - 27\,x^9 + 5\,x^7 + 11\,x^6 + \\ &45\,x^5 - 17\,x^4 + 30\,x^3 - 2\,x^2 + 35\,x - 46, \\ &(-11\,x^{14} - 35\,x^{13} - 26\,x^{12} - 21\,x^{11} + 25\,x^{10} + 23\,x^9 + 4\,x^8 - 24\,x^7 + \\ &9\,x^6 + 43\,x^5 - 47\,x^4 + 26\,x^3 + 19\,x^2 - 40\,x - 32)y]. \end{aligned}$

For t = 1 the point $[t]\pi(x, y) = \pi(x, y)$ has a non-trivial gcd with $\pi^2(x, y) + [2](x, y)$ in both its x- and y-coordinate.

Thus, $t \equiv 1 \mod 5$.

In fact, t = -14 and therefore $\#E(\mathbf{F}_{97}) = 97 + 1 - (-14) = 112 = 2^4 \cdot 7.$

Complexity - very rough operation count

Each prime ℓ is about $\mathcal{O}(\log q)$.

Fix ℓ.

Elements of $\mathcal{R}_{\ell} = \mathbf{F}_q[X, Y]/(Y^2 - X^3 - AX - B, \psi_{\ell})(X)$ have size $\mathcal{O}(\ell^2 \log q) = \mathcal{O}(\log^3 q)$, since $\deg \psi_{\ell} = (\ell^2 - 1)/2$.

Computing the Frobenius endomorphism in \mathcal{R}_{ℓ} takes $\mathcal{O}(\log^7 q)$ bit operations.

Prime number theorem: need $\mathcal{O}(\log q)$ primes ℓ .

Total cost: $\mathcal{O}(\log^8 q)$.

Summary Schoof's algorithm

Determine the trace t of the Frobenius endomorphism π modulo small primes ℓ , in order to compute $\#E(\mathbf{F}_q) = q + 1 - t$.

Compute $t \mod \ell$ in $\mathcal{R}_{\ell} = \mathbf{F}_q[X,Y]/(Y^2 - X^3 - AX - B, \psi_{\ell}(X))$ whose size is determined by the degree of ψ_{ℓ} which is $(\ell^2 - 1)/2$).

Improvement:

Try to determine the trace modulo ℓ in a subgroup of $E[\ell]$ and therefore determine a linear factor of the ℓ th division polynomial ψ_{ℓ} .

1. Introduction

2. Schoof's algorithm

3. Computing in the torsion group

4. Improvements by Elkies

Characteristic polynomial revisited

The Frobenius endomorphism π is a linear operator on the vector space $E[\ell] \cong \mathbf{F}_{\ell}^2$.

Its characteristic polynomial splits over $ar{\mathbf{F}_\ell}$

$$T^2 - tT + q = (T - \lambda_1)(T - \lambda_2).$$

If $\lambda_1, \lambda_2 \in \mathbf{F}_{\ell}$, we found two eigenvalues of π . We call ℓ an Elkies prime.

Then there exist two points $P_1, P_2 \in E[\ell]$ such that $\pi(P_1) = [\lambda_1]P_1$ and $\pi(P_2) = [\lambda_2]P_2$.

The points P_1,P_2 generate each a $\pi\text{-invariant}$ subgroup of order ℓ of $E[\ell].$

Compute the trace of the Frobenius in a subgroup of $E[\ell]$

Characteristic equation $T^2 - tT + q = (T - \lambda_1)(T - \lambda_2).$

For $\lambda_1,\lambda_2\in {f F}_\ell$ we get $q=\lambda_1\cdot\lambda_2$ and thus

$$t = \lambda_1 + \lambda_2 = \lambda_1 + q/\lambda_1.$$

Determining t in a subgroup means finding an eigenvalue of the Frobenius in \mathbf{F}_{ℓ} .

New 'check equation'. Find $\lambda \in \{0, 1, \dots, \ell - 1\}$ such that

$$\pi(P) = [\lambda](P)$$

for a non-trivial point of a subgroup of $E[\ell]$.

Determine whether ℓ is an Elkies prime

Let E have a subgroup C of prime order ℓ . Then there exists an elliptic curve E' and an isogeny $\phi: E \to E'$ with kernel C.

The ℓ th modular polynomial Φ_{ℓ} is a polynomial of degree $\ell + 1$ in $\mathbf{F}_q[X, Y]$. Its roots are exactly the *j*-invariants of all ℓ -isogeneous elliptic curves.

Theorem

Let E be an elliptic curve over \mathbf{F}_q , not supersingular with j-invariant j not equal to 0 or 1728. Then E has a π -invariant subgroup C of order ℓ if and only if the polynomial $\Phi_\ell(j,T)$ has a root \tilde{j} in \mathbf{F}_q .

Note: \tilde{j} is the *j*-invariant of an ℓ -isogeneous elliptic curve E' which is isomorphic to E/\mathcal{C} .

Representing a ℓ -group C

Determine factor F_{ℓ} of ψ_{ℓ} in $\mathbf{F}_q[X]$ such that

$$(x,y) \in \mathcal{C} \Leftrightarrow F_{\ell}(x) = 0.$$

Construct F_{ℓ} by finding an degree- ℓ isogeny ϕ with kernel C.

We get

$$F_{\ell}(X) = \prod_{\substack{\pm P \in \mathcal{C} \\ P \neq \mathcal{P}_{\infty}}} (X - P_x).$$

Degree: $\deg_X F_{\ell} = (\ell - 1)/2.$

Complexity for the Elkies procedure

Compute the Frobenius and $[\lambda]P$ in the ring $\mathbf{F}_q[X,Y]/(Y^2 - X^3 - AX - B, F_\ell(X))$ which has size $\mathcal{O}(\ell \log q) = \mathcal{O}(\log^2 q).$

Overall complexity $\mathcal{O}(\log^5 q)$ bit operations.

Atkin and SEA

If ℓ is not an Elkies prime we can use Atkin's method to compute $t \mod \ell$:

Determine the rth power of the Frobenius such that there is a π^r -invariant subgroup of $E[\ell]$. Then $t \mod \ell$ satisfies

$$t^2 \equiv (\zeta_r + 2 + \zeta_r^{-1})q$$

for an rth root of unity.

Schoof-Elkies-Atkin algorithm

- Compute the trace t modulo small primes ℓ until $\prod \ell > 4\sqrt{q}.$
- For each ℓ use the modular polynomial Φ_{ℓ} to decide whether to use Elkies' or Atkin's procedure.
- Determine the trace t in the Hasse interval using the Chinese Remainder theorem.

Complexity of SEA: $\mathcal{O}(\log^6 q)$.

Thank you!