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Motivation

Given an elliptic curve E over a finite field F,.

Is the Discrete Logarithm Problem hard on E7?

One criterion for hardness: Group order #E(F ) divisible by a
large prime factor.



Short introductory notes

Schoof (1983): first polynomial-time algorithm for point
counting.

late 80s/early 90s: Elkies and Atkin come up with speed-ups;
leads to SEA (Schoof-Elkies-Atkin) algorithm.

mid-90s: lots of speed-ups, characteristic-2 algorithms

note: basic Schoof algorithm also applicable for hyperelliptic
curves;
see Eric Schost's talk next week at ECC



1. Introduction



Elliptic curves over F,

Let ¢ = p" for a prime p > 5.

Given A, B € F, with 443 + 27B? # 0. The zero set of

Y2=X3+AX +B

with the point P, at infinity forms an elliptic curve.



Multiplication map

Let m € Z.
If m > 0:
mj(P)=P+ -+ D,
m times
If m <0:

[0] : E — E, [0](P) = Pw is the constant map and [1] the
identity.

The m-torsion group contains all points of order divisible by m:

Elm]={P e E : [m](P) =P}



Frobenius Endomorphism

The map
T E—E,  (xy)— (@%y9)

is called Frobenius endomorphism.
We call a point (z,y) on E F,-rational if and only if

m(z,y) = (2, y).

We denote the rational points of £ by E(F,).

In particular
E(F,) = ker([1] — ).



The number of rational points

Denote the number of rational points of E by #E(F,).

Trivial bound #E(F,) < 2¢ + 1:
check for all z € F, whether x3 + Az + B is a square in F,.

Recall Legendre symbol:

(G

0 ifa=0inF,

> —1 if ais a non-square in Fy,
1 ifaisasquarein F,.

We get
34 Az + B
HEF) =1+ (1+<%>>

zeFy



Hasse's bound

The Frobenius endomorphism satisfies the following
characteristic equation over Z.

7r2—t7r—|—q:0.

The integer t is called the trace of the Frobenius endomorphism.
It satisfies

o
#E(F,) =1+q—t.

It < 2/a.



2. Schoof’s algorithm
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The idea
Hasse: #E(F,) =q+1—t with [t| <2,/3.

Let L be minimimal among all primes which satisfy

I ¢>4va

£ prime
2<¢<L

Then the Chinese Remainder Theorem gives a unique ¢ satisfying

t mod J]¢ €[-2va 2vq)

Prime number theorem: Need only O(logq) primes £.

—p.11



Determine t mod /¢

The restriction of the Frobenius endomorphism 7 to E[/]
satisfies
w2 —t' T+ qd =0

where t' =t mod £ and ¢’ = ¢ mod ¢ are uniquely determined.

Let P € E[f].
1. Compute R = n(P) and Q = 7%(P) + [¢']P in E[/].
2. Check which ¢/ € {0,1,...,¢ — 1} satisfies

Q=R
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3. Computing in the torsion group
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Division polynomials

Torsion group Em| ={P € E : [m](P) = Px}.
If ged(q, m) =1 we have

E[m] = (Z/mZ) x (Z/mZ).

Let m > 1. The /th division polynomial ¢y € Fy[X,Y] vanishes
in all £-torsion points, i.e.,

for P = (z,y) in E(F,), P € E[2]

(P =Py & Up(z,y) =0.
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Recursion for ¢,,(X,Y)
Given E:Y? = X3 + AX + B over F.

v = 1,
Yo = 2Y,
3 = 3X*4+6AX2+12BX — A2,
Yy = A4Y (XS +5AX*4+20BX3 -~ 542 X% —4ABX —8B% — A3)
and
Vomt1 = Umpa 3, — ,3n+1 Vm—1 if m > 2,
2Y%on = Y (bmt2 Y1 — Ym—2¥pi1) if m > 3.

Let ged(m,q) = 1.
@ For odd m we have 1,,, € F[X] with degy (¢,,) = (m? —1)/2.

@ For even m we have ¢, € Y F,[X] with
deg y (¥m) = (m? — 4)/2. (replace all powers of Y by the curve
equation.)
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Multiplication map revisited

Theorem
For m > 3
_ - ¢m—l ¢m+l wm+2 Q%277,—1 - wm—Q ¢72-,H_1
R T |

Note: this shows that [m] is a rational map.
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Compute in a polynomial ring

Check equality 72(P) + [¢](P) = [t](P) in E[f] by looking at
the polynomials corresponding to the z-coordinates of the point
on the left and right side, resp.

We compute the trace ¢ modulo ¢ in the ring
Re=Fy[X,Y]/(Y? = X° — AX — B,9¢(X))

If we want to check if p1(X) = pa(X) in Ry for two polynomials

p1(X), p2(X) we check whether

ged(pr — pa, ) # 1.

Exercise Given a point (z,y) on a curve in Weierstrass form.
You can write y? as h(x)y in Ry. Determine h(z) € Fz].
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Example

Consider the curve E: Y2 = X3 + 31X — 12 in F, with ¢ = 97.

Determine the trace of @ modulo ¢ = 5.

The 5th division polynomial v5 is given by 5212 — 18210 — 29 —

2528 — 4027 — 3928 + 725 + 3% — 1423 + 2622 + 402 + 47

Given a point P = (z,y) in E[5] we work in
Rs = Forlz,y]/(y* — 2 — 31z +12,45(x)).
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Computing in R

m(x,y) =

472 + 11210 —162° + 828 + 4427 + 825 +102° + 122* —

40 2% +422% + 112 + 26,

(62 + 45210 +342° + 2828 — 1127 +32% —32° +22% — 3923 —
4822 —z — 9)y).

w2 (w,y) =

(172 + 2210 — 2529 — 28 42827 + 3125 + 2525 — 322% +
4523 + 26 22 + 36 = + 34,

(342 + 35210 —82% — 1128 — 4827 + 3425 — 82° — 372 —
2123 + 4022 + 11z + 48)y].

[¢ mod 5](z,y) = [2](z,y) =

2221 + 17210 + 1827 + 4028 + 4127 — 132% + 302° + 11 2* —
3823 + 722 +20x + 17,

(—112'0 — 1729 — 4828 — 1227 + 1725 + 442° — 102* + 823 +

3822 + 25 x + 24)y]
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Find ¢ such that 7%(z, y) + [2](z,y) = [t]7(z, y)

m(w,y) +[2]P =

[~1421* + 15213 — 20212 — 4321 — 10210 — 272% + 527 + 1125 +
4525 —172* + 3023 — 222 + 352 — 46,

(=112 - 35213 — 26212 — 2121 + 25210 +232° + 428 — 2427 +
920 +432° —472% 4+ 2623 + 1922 — 402 — 32)y].

For t = 1 the point [t|7(x,y) = w(x,y) has a non-trivial gcd
with 7%(z,y) + [2](z,y) in both its z- and y-coordinate.

Thus, t =1 mod 5.

In fact, t = —14 and therefore
#EFo7) =97T+1—(—14)=112=2*.7.
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Complexity - very rough operation count

Each prime ¢ is about O(log q).

Fix £.

Elements of Ry = F,[X,Y]/(Y? — X3 — AX — B,4y)(X) have
size O(£?log q) = O(log? q), since degy, = (£2 —1)/2.

Computing the Frobenius endomorphism in R, takes (’)(log7 q)
bit operations.

Prime number theorem: need O(logq) primes £.

Total cost: O(log® q).
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Summary Schoof's algorithm

Determine the trace t of the Frobenius endomorphism 7 modulo
small primes ¢, in order to compute #E(F;) =q+1—t.

Compute t mod £ in
Re=F,[X,Y]/(Y? - X3 — AX — B,y(X)) whose size is
determined by the degree of ¢ which is (¢2 —1)/2).

Improvement:
Try to determine the trace modulo ¢ in a subgroup of E[¢] and
therefore determine a linear factor of the fth division polynomial

Yy
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4. Improvements by Elkies
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Characteristic polynomial revisited

The Frobenius endomorphism 7 is a linear operator on the
vector space E[(] = F2.

Its characteristic polynomial splits over F,
T? —tT +q= (T — M) (T — o).

If A1, A2 € Fy, we found two eigenvalues of 7. We call £ an
Elkies prime.

Then there exist two points Py, P, € E[{] such that
7T(P1) = [)\1]P1 and 7I‘(P2) = [)\Q]PQ.

The points P;, P» generate each a m-invariant subgroup of order
¢ of E[).
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Compute the trace of the Frobenius in a subgroup of E[/]
Characteristic equation 72 —tT + q = (T — A\ )(T — X2).

For A1, A2 € Fy we get ¢ = A1 - A2 and thus
t=XM—+X =X\ +¢/\.

Determining ¢ in a subgroup means finding an eigenvalue of the
Frobenius in Fy.

New 'check equation’. Find A € {0,1,...,¢ — 1} such that

for a non-trivial point of a subgroup of E[/].
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Determine whether ¢ is an Elkies prime

Let E have a subgroup C of prime order £. Then there exists an
elliptic curve E’ and an isogeny ¢ : E — E’ with kernel C.

The £th modular polynomial ®, is a polynomial of degree ¢ + 1
in F,[X,Y]. Its roots are exactly the j-invariants of all
l-isogeneous elliptic curves.

Theorem

Let F be an elliptic curve over F, not supersingular with
j-invariant j not equal to 0 or 1728.

Then E has a m-invariant subgroup C of order ¢ if and only if
the polynomial ®,(j,T") has a root jin Fy.

Note: j is the j-invariant of an f-isogeneous elliptic curve E’
which is isomorphic to E/C.
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Representing a ¢-group C

Determine factor Fy of 1), in F,[X] such that

(x,y) €C & Fy(x) =0.

Construct Fy by finding an degree-¢ isogeny ¢ with kernel C.

We get
FZ(X) = H (X_Pr)

+PeC
P#Po

Degree: degy Fy = (£ —1)/2.
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Complexity for the Elkies procedure

Compute the Frobenius and [A]P in the ring
F,[X,Y]/(Y? - X3 — AX — B, F;(X)) which has size
O(llog g) = O(log” q).

Overall complexity O(log® ) bit operations.
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Atkin and SEA

If £ is not an Elkies prime we can use Atkin's method to
compute ¢ mod /:

Determine the rth power of the Frobenius such that there is a
n"-invariant subgroup of E[¢]. Then ¢ mod ¢ satisfies

t?=(G+2+¢ g

for an rth root of unity.
Schoof-Elkies-Atkin algorithm
o Compute the trace t modulo small primes £ until
[1¢> 44
@ For each £ use the modular polynomial ®, to decide
whether to use Elkies" or Atkin's procedure.

@ Determine the trace t in the Hasse interval using the
Chinese Remainder theorem.

Complexity of SEA: O(log® q).
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Thank you!
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