Counting points on elliptic curves over \mathbf{F}_{q}

Christiane Peters

DIAMANT-Summer School on
Elliptic and Hyperelliptic Curve Cryptography
September 17, 2008

Motivation

Given an elliptic curve E over a finite field \mathbf{F}_{q}.

Is the Discrete Logarithm Problem hard on E ?

One criterion for hardness: Group order $\# E\left(\mathbf{F}_{q}\right)$ divisible by a large prime factor.

Short introductory notes

Schoof (1983): first polynomial-time algorithm for point counting.
late 80s/early 90s: Elkies and Atkin come up with speed-ups; leads to SEA (Schoof-Elkies-Atkin) algorithm.
mid-90s: lots of speed-ups, characteristic-2 algorithms
note: basic Schoof algorithm also applicable for hyperelliptic curves;
see Eric Schost's talk next week at ECC

1. Introduction
2. Schoof's algorithm
3. Computing in the torsion group
4. Improvements by Elkies

Elliptic curves over \mathbf{F}_{q}

Let $q=p^{r}$ for a prime $p \geq 5$.

Given $A, B \in \mathbf{F}_{q}$ with $4 A^{3}+27 B^{2} \neq 0$. The zero set of

$$
Y^{2}=X^{3}+A X+B
$$

with the point \mathcal{P}_{∞} at infinity forms an elliptic curve.

Multiplication map

Let $m \in \mathbf{Z}$.
If $m>0$:

$$
[m](P)=\underbrace{P+\cdots+P}_{m \text { times }}
$$

If $m<0$:

$$
[m](P)=[-m](-P)
$$

$[0]: E \rightarrow E,[0](P)=\mathcal{P}_{\infty}$ is the constant map and [1] the identity.

The m-torsion group contains all points of order divisible by m :

$$
E[m]=\left\{P \in E:[m](P)=\mathcal{P}_{\infty}\right\} .
$$

Frobenius Endomorphism

The map

$$
\pi: E \rightarrow E, \quad(x, y) \mapsto\left(x^{q}, y^{q}\right)
$$

is called Frobenius endomorphism.

We call a point (x, y) on $E \mathbf{F}_{q^{-}}$-rational if and only if

$$
\pi(x, y)=(x, y)
$$

We denote the rational points of E by $E\left(\mathbf{F}_{q}\right)$.

In particular

$$
E\left(\mathbf{F}_{q}\right)=\operatorname{ker}([1]-\pi) .
$$

The number of rational points

Denote the number of rational points of E by $\# E\left(\mathbf{F}_{q}\right)$.
Trivial bound $\# E\left(\mathbf{F}_{q}\right) \leq 2 q+1$: check for all $x \in \mathbf{F}_{q}$ whether $x^{3}+A x+B$ is a square in \mathbf{F}_{q}.

Recall Legendre symbol:

$$
\left(\frac{a}{q}\right)=\left\{\begin{aligned}
-1 & \text { if } a \text { is a non-square in } \mathbf{F}_{q} \\
0 & \text { if } a=0 \text { in } \mathbf{F}_{q} \\
1 & \text { if } a \text { is a square in } \mathbf{F}_{q}
\end{aligned}\right.
$$

We get

$$
\# E\left(\mathbf{F}_{q}\right)=1+\sum_{x \in \mathbf{F}_{q}}\left(1+\left(\frac{x^{3}+A x+B}{q}\right)\right)
$$

Hasse's bound

The Frobenius endomorphism satisfies the following characteristic equation over \mathbf{Z}.

$$
\pi^{2}-t \pi+q=0 .
$$

The integer t is called the trace of the Frobenius endomorphism. It satisfies
-

$$
\# E\left(\mathbf{F}_{q}\right)=1+q-t .
$$

-

$$
|t| \leq 2 \sqrt{q}
$$

1. Introduction
2. Schoof's algorithm
3. Computing in the torsion group
4. Improvements by Elkies

The idea

Hasse:

$$
\# E\left(\mathbf{F}_{q}\right)=q+1-t \text { with }|t| \leq 2 \sqrt{q}
$$

Let L be minimimal among all primes which satisfy

$$
\prod_{\substack{\ell \text { prime } \\ 2 \leq \ell \leq L}} \ell>4 \sqrt{q} .
$$

Then the Chinese Remainder Theorem gives a unique t satisfying

$$
t \bmod \prod \ell \in[-2 \sqrt{q}, 2 \sqrt{q}] .
$$

Prime number theorem: Need only $\mathcal{O}(\log q)$ primes ℓ.

Determine $t \bmod \ell$

The restriction of the Frobenius endomorphism π to $E[\ell]$ satisfies

$$
\pi^{2}-t^{\prime} \pi+q^{\prime}=0
$$

where $t^{\prime}=t \bmod \ell$ and $q^{\prime}=q \bmod \ell$ are uniquely determined.

Let $P \in E[\ell]$.

1. Compute $R=\pi(P)$ and $Q=\pi^{2}(P)+\left[q^{\prime}\right] P$ in $E[\ell]$.
2. Check which $t^{\prime} \in\{0,1, \ldots, \ell-1\}$ satisfies

$$
Q=\left[t^{\prime}\right] R
$$

1. Introduction
2. Schoof's algorithm
3. Computing in the torsion group
4. Improvements by Elkies

Division polynomials

Torsion group $E[m]=\left\{P \in E:[m](P)=\mathcal{P}_{\infty}\right\}$.
If $\operatorname{gcd}(q, m)=1$ we have

$$
E[m] \cong(\mathbf{Z} / m \mathbf{Z}) \times(\mathbf{Z} / m \mathbf{Z})
$$

Let $m \geq 1$. The ℓ th division polynomial $\psi_{\ell} \in \mathbf{F}_{q}[X, Y]$ vanishes in all ℓ-torsion points, i.e.,

$$
\text { for } P=(x, y) \text { in } E\left(\overline{\mathbf{F}}_{q}\right), P \notin E[2]
$$

$$
\ell P=\mathcal{P}_{\infty} \Leftrightarrow \psi_{\ell}(x, y)=0
$$

Recursion for $\psi_{m}(X, Y)$

Given $E: Y^{2}=X^{3}+A X+B$ over \mathbf{F}_{q}.

$$
\begin{aligned}
& \psi_{1}=1 \\
& \psi_{2}=2 Y, \\
& \psi_{3}=3 X^{4}+6 A X^{2}+12 B X-A^{2}, \\
& \psi_{4}=4 Y\left(X^{6}+5 A X^{4}+20 B X^{3}-5 A^{2} X^{2}-4 A B X-8 B^{2}-A^{3}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\psi_{2 m+1} & =\psi_{m+2} \psi_{m}^{3}-\psi_{m+1}^{3} \psi_{m-1} & & \text { if } m \geq 2, \\
2 Y \psi_{2 m} & =\psi_{m}\left(\psi_{m+2} \psi_{m-1}^{2}-\psi_{m-2} \psi_{m+1}^{2}\right) & & \text { if } m \geq 3 .
\end{aligned}
$$

Let $\operatorname{gcd}(m, q)=1$.

- For odd m we have $\psi_{m} \in \mathbf{F}_{q}[X]$ with $\operatorname{deg}_{X}\left(\psi_{m}\right)=\left(m^{2}-1\right) / 2$.
- For even m we have $\psi_{m} \in Y \mathbf{F}_{q}[X]$ with $\operatorname{deg}_{X}\left(\psi_{m}\right)=\left(m^{2}-4\right) / 2$. (replace all powers of Y by the curve equation.)

Multiplication map revisited

Theorem
For $m \geq 3$

$$
[m](x, y)=\left(x-\frac{\psi_{m-1} \psi_{m+1}}{\psi_{m}^{2}}, \frac{\psi_{m+2} \psi_{m-1}^{2}-\psi_{m-2} \psi_{m+1}^{2}}{4 y \psi_{m}^{3}}\right)
$$

Note: this shows that $[m]$ is a rational map.

Compute in a polynomial ring

Check equality $\pi^{2}(P)+[q](P)=[t](P)$ in $E[\ell]$ by looking at the polynomials corresponding to the x-coordinates of the point on the left and right side, resp.

We compute the trace t modulo ℓ in the ring

$$
\mathcal{R}_{\ell}=\mathbf{F}_{q}[X, Y] /\left(Y^{2}-X^{3}-A X-B, \psi_{\ell}(X)\right)
$$

If we want to check if $p_{1}(X)=p_{2}(X)$ in \mathcal{R}_{ℓ} for two polynomials $p_{1}(X), p_{2}(X)$ we check whether

$$
\operatorname{gcd}\left(p_{1}-p_{2}, \psi_{\ell}\right) \neq 1
$$

Exercise Given a point (x, y) on a curve in Weierstrass form. You can write y^{q} as $h(x) y$ in \mathcal{R}_{ℓ}. Determine $h(x) \in \mathbf{F}_{q}[x]$.

Example

Consider the curve $E: Y^{2}=X^{3}+31 X-12$ in \mathbf{F}_{q} with $q=97$.

Determine the trace of π modulo $\ell=5$.

The 5th division polynomial ψ_{5} is given by $5 x^{12}-18 x^{10}-x^{9}-$ $25 x^{8}-40 x^{7}-39 x^{6}+7 x^{5}+3 x^{4}-14 x^{3}+26 x^{2}+40 x+47$

Given a point $P=(x, y)$ in $E[5]$ we work in $\mathcal{R}_{5}=\mathbf{F}_{97}[x, y] /\left(y^{2}-x^{3}-31 x+12, \psi_{5}(x)\right)$.

Computing in \mathcal{R}_{5}

$$
\begin{aligned}
& \pi(x, y)= \\
& {\left[47 x^{11}+11 x^{10}-16 x^{9}+8 x^{8}+44 x^{7}+8 x^{6}+10 x^{5}+12 x^{4}-\right.} \\
& 40 x^{3}+42 x^{2}+11 x+26, \\
& \left(6 x^{11}+45 x^{10}+34 x^{9}+28 x^{8}-11 x^{7}+3 x^{6}-3 x^{5}+2 x^{4}-39 x^{3}-\right. \\
& \left.\left.48 x^{2}-x-9\right) y\right] . \\
& \pi^{2}(x, y)= \\
& {\left[-17 x^{11}+2 x^{10}-25 x^{9}-x^{8}+28 x^{7}+31 x^{6}+25 x^{5}-32 x^{4}+\right.} \\
& 45 x^{3}+26 x^{2}+36 x+34, \\
& \left(34 x^{11}+35 x^{10}-8 x^{9}-11 x^{8}-48 x^{7}+34 x^{6}-8 x^{5}-37 x^{4}-\right. \\
& \left.\left.21 x^{3}+40 x^{2}+11 x+48\right) y\right] . \\
& {[q \bmod 5](x, y)=[2](x, y)=} \\
& {\left[22 x^{11}+17 x^{10}+18 x^{9}+40 x^{8}+41 x^{7}-13 x^{6}+30 x^{5}+11 x^{4}-\right.} \\
& 38 x^{3}+7 x^{2}+20 x+17, \\
& \left(-11 x^{10}-17 x^{9}-48 x^{8}-12 x^{7}+17 x^{6}+44 x^{5}-10 x^{4}+8 x^{3}+\right. \\
& \left.\left.38 x^{2}+25 x+24\right) y\right]
\end{aligned}
$$

Find t such that $\pi^{2}(x, y)+[2](x, y)=[t] \pi(x, y)$

$$
\begin{aligned}
& \pi^{2}(x, y)+[2] P= \\
& {\left[-14 x^{14}+15 x^{13}-20 x^{12}-43 x^{11}-10 x^{10}-27 x^{9}+5 x^{7}+11 x^{6}+\right.} \\
& 45 x^{5}-17 x^{4}+30 x^{3}-2 x^{2}+35 x-46 \\
& \left(-11 x^{14}-35 x^{13}-26 x^{12}-21 x^{11}+25 x^{10}+23 x^{9}+4 x^{8}-24 x^{7}+\right. \\
& \left.\left.9 x^{6}+43 x^{5}-47 x^{4}+26 x^{3}+19 x^{2}-40 x-32\right) y\right]
\end{aligned}
$$

For $t=1$ the point $[t] \pi(x, y)=\pi(x, y)$ has a non-trivial gcd with $\pi^{2}(x, y)+[2](x, y)$ in both its x - and y-coordinate.

Thus, $t \equiv 1 \bmod 5$.

In fact, $t=-14$ and therefore $\# E\left(\mathbf{F}_{97}\right)=97+1-(-14)=112=2^{4} \cdot 7$.

Complexity - very rough operation count

Each prime ℓ is about $\mathcal{O}(\log q)$.

Fix ℓ.
Elements of $\mathcal{R}_{\ell}=\mathbf{F}_{q}[X, Y] /\left(Y^{2}-X^{3}-A X-B, \psi_{\ell}\right)(X)$ have size $\mathcal{O}\left(\ell^{2} \log q\right)=\mathcal{O}\left(\log ^{3} q\right)$, since $\operatorname{deg} \psi_{\ell}=\left(\ell^{2}-1\right) / 2$.

Computing the Frobenius endomorphism in \mathcal{R}_{ℓ} takes $\mathcal{O}\left(\log ^{7} q\right)$ bit operations.

Prime number theorem: need $\mathcal{O}(\log q)$ primes ℓ.

Total cost: $\mathcal{O}\left(\log ^{8} q\right)$.

Summary Schoof's algorithm

Determine the trace t of the Frobenius endomorphism π modulo small primes ℓ, in order to compute $\# E\left(\mathbf{F}_{q}\right)=q+1-t$.

Compute $t \bmod \ell$ in $\mathcal{R}_{\ell}=\mathbf{F}_{q}[X, Y] /\left(Y^{2}-X^{3}-A X-B, \psi_{\ell}(X)\right)$ whose size is determined by the degree of ψ_{ℓ} which is $\left.\left(\ell^{2}-1\right) / 2\right)$.

Improvement:
Try to determine the trace modulo ℓ in a subgroup of $E[\ell]$ and therefore determine a linear factor of the ℓ th division polynomial ψ_{ℓ}.

1. Introduction
2. Schoof's algorithm
3. Computing in the torsion group
4. Improvements by Elkies

Characteristic polynomial revisited

The Frobenius endomorphism π is a linear operator on the vector space $E[\ell] \cong \mathbf{F}_{\ell}^{2}$.

Its characteristic polynomial splits over $\overline{\mathbf{F}}_{\ell}$

$$
T^{2}-t T+q=\left(T-\lambda_{1}\right)\left(T-\lambda_{2}\right)
$$

If $\lambda_{1}, \lambda_{2} \in \mathbf{F}_{\ell}$, we found two eigenvalues of π. We call ℓ an Elkies prime.

Then there exist two points $P_{1}, P_{2} \in E[\ell]$ such that $\pi\left(P_{1}\right)=\left[\lambda_{1}\right] P_{1}$ and $\pi\left(P_{2}\right)=\left[\lambda_{2}\right] P_{2}$.

The points P_{1}, P_{2} generate each a π-invariant subgroup of order ℓ of $E[\ell]$.

Compute the trace of the Frobenius in a subgroup of $E[\ell]$

Characteristic equation $T^{2}-t T+q=\left(T-\lambda_{1}\right)\left(T-\lambda_{2}\right)$.

For $\lambda_{1}, \lambda_{2} \in \mathbf{F}_{\ell}$ we get $q=\lambda_{1} \cdot \lambda_{2}$ and thus

$$
t=\lambda_{1}+\lambda_{2}=\lambda_{1}+q / \lambda_{1} .
$$

Determining t in a subgroup means finding an eigenvalue of the Frobenius in \mathbf{F}_{ℓ}.

New 'check equation'. Find $\lambda \in\{0,1, \ldots, \ell-1\}$ such that

$$
\pi(P)=[\lambda](P)
$$

for a non-trivial point of a subgroup of $E[\ell]$.

Determine whether ℓ is an Elkies prime

Let E have a subgroup \mathcal{C} of prime order ℓ. Then there exists an elliptic curve E^{\prime} and an isogeny $\phi: E \rightarrow E^{\prime}$ with kernel \mathcal{C}.

The ℓ th modular polynomial Φ_{ℓ} is a polynomial of degree $\ell+1$ in $\mathbf{F}_{q}[X, Y]$. Its roots are exactly the j-invariants of all ℓ-isogeneous elliptic curves.

Theorem

Let E be an elliptic curve over \mathbf{F}_{q}, not supersingular with j-invariant j not equal to 0 or 1728 .
Then E has a π-invariant subgroup \mathcal{C} of order ℓ if and only if the polynomial $\Phi_{\ell}(j, T)$ has a root $\tilde{\jmath}$ in \mathbf{F}_{q}.

Note: $\tilde{\jmath}$ is the j-invariant of an ℓ-isogeneous elliptic curve E^{\prime} which is isomorphic to E / \mathcal{C}.

Representing a ℓ-group \mathcal{C}

Determine factor F_{ℓ} of ψ_{ℓ} in $\mathbf{F}_{q}[X]$ such that

$$
(x, y) \in \mathcal{C} \Leftrightarrow F_{\ell}(x)=0
$$

Construct F_{ℓ} by finding an degree- ℓ isogeny ϕ with kernel \mathcal{C}.

We get

$$
F_{\ell}(X)=\prod_{\substack{ \pm P \in \mathcal{C} \\ P \neq \mathcal{P}_{\infty}}}\left(X-P_{x}\right)
$$

Degree: $\operatorname{deg}_{X} F_{\ell}=(\ell-1) / 2$.

Complexity for the Elkies procedure

Compute the Frobenius and $[\lambda] P$ in the ring $\mathbf{F}_{q}[X, Y] /\left(Y^{2}-X^{3}-A X-B, F_{\ell}(X)\right)$ which has size $\mathcal{O}(\ell \log q)=\mathcal{O}\left(\log ^{2} q\right)$.

Overall complexity $\mathcal{O}\left(\log ^{5} q\right)$ bit operations.

Atkin and SEA

If ℓ is not an Elkies prime we can use Atkin's method to compute $t \bmod \ell$:
Determine the r th power of the Frobenius such that there is a π^{r}-invariant subgroup of $E[\ell]$. Then $t \bmod \ell$ satisfies

$$
t^{2} \equiv\left(\zeta_{r}+2+\zeta_{r}^{-1}\right) q
$$

for an r th root of unity.

Schoof-Elkies-Atkin algorithm

- Compute the trace t modulo small primes ℓ until $\Pi \ell>4 \sqrt{q}$.
- For each ℓ use the modular polynomial Φ_{ℓ} to decide whether to use Elkies' or Atkin's procedure.
- Determine the trace t in the Hasse interval using the Chinese Remainder theorem.
Complexity of SEA: $\mathcal{O}\left(\log ^{6} q\right)$.

Thank you!

