
Counting points on elliptic curves over Fq

Christiane Peters

DIAMANT-Summer School on
Elliptic and Hyperelliptic Curve Cryptography

September 17, 2008



Motivation

Given an elliptic curve E over a finite field Fq.

Is the Discrete Logarithm Problem hard on E?

One criterion for hardness: Group order #E(Fq) divisible by a
large prime factor.
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Short introductory notes

Schoof (1983): first polynomial-time algorithm for point
counting.

late 80s/early 90s: Elkies and Atkin come up with speed-ups;
leads to SEA (Schoof-Elkies-Atkin) algorithm.

mid-90s: lots of speed-ups, characteristic-2 algorithms

note: basic Schoof algorithm also applicable for hyperelliptic
curves;
see Eric Schost’s talk next week at ECC
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Elliptic curves over Fq

Let q = pr for a prime p ≥ 5.

Given A,B ∈ Fq with 4A3 + 27B2 6= 0. The zero set of

Y 2 = X3 +AX +B

with the point P∞ at infinity forms an elliptic curve.
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Multiplication map

Let m ∈ Z.

If m > 0:
[m](P ) = P + · · · + P

︸ ︷︷ ︸

m times

,

If m < 0:
[m] (P ) = [−m](−P ).

[0] : E → E, [0](P ) = P∞ is the constant map and [1] the
identity.

The m-torsion group contains all points of order divisible by m:

E[m] = {P ∈ E : [m](P ) = P∞}.
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Frobenius Endomorphism

The map
π : E → E, (x, y) 7→ (xq, yq)

is called Frobenius endomorphism.

We call a point (x, y) on E Fq-rational if and only if

π(x, y) = (x, y).

We denote the rational points of E by E(Fq).

In particular
E(Fq) = ker([1] − π).
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The number of rational points

Denote the number of rational points of E by #E(Fq).

Trivial bound #E(Fq) ≤ 2q + 1:
check for all x ∈ Fq whether x3 +Ax+B is a square in Fq.

Recall Legendre symbol:

(
a

q

)

=







−1 if a is a non-square in Fq,
0 if a = 0 in Fq,
1 if a is a square in Fq.

We get

#E(Fq) = 1 +
∑

x∈Fq

(

1 +

(
x3 +Ax+B

q

))

.

–p.8



Hasse’s bound

The Frobenius endomorphism satisfies the following
characteristic equation over Z.

π2 − t π + q = 0.

The integer t is called the trace of the Frobenius endomorphism.
It satisfies

#E(Fq) = 1 + q − t.

|t| ≤ 2
√
q.
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The idea

Hasse: #E(Fq) = q + 1 − t with |t| ≤ 2
√
q.

Let L be minimimal among all primes which satisfy

∏

ℓ prime
2≤ℓ≤L

ℓ > 4
√
q.

Then the Chinese Remainder Theorem gives a unique t satisfying

t mod
∏

ℓ ∈ [−2
√
q, 2

√
q ].

Prime number theorem: Need only O(log q) primes ℓ.
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Determine t mod ℓ

The restriction of the Frobenius endomorphism π to E[ℓ]
satisfies

π2 − t′ π + q′ = 0

where t′ = t mod ℓ and q′ = q mod ℓ are uniquely determined.

Let P ∈ E[ℓ].

1. Compute R = π(P ) and Q = π2(P ) + [q′]P in E[ℓ].

2. Check which t′ ∈ {0, 1, . . . , ℓ− 1} satisfies

Q = [t′]R.

–p.12



1. Introduction

2. Schoof’s algorithm

3. Computing in the torsion group

4. Improvements by Elkies

–p.13



Division polynomials

Torsion group E[m] = {P ∈ E : [m](P ) = P∞}.
If gcd(q,m) = 1 we have

E[m] ∼= (Z/mZ) × (Z/mZ).

Let m ≥ 1. The ℓth division polynomial ψℓ ∈ Fq[X,Y ] vanishes
in all ℓ-torsion points, i.e.,

for P = (x, y) in E(F̄q), P 6∈ E[2]

ℓ P = P∞ ⇔ ψℓ(x, y) = 0.
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Recursion for ψm(X, Y )

Given E : Y 2 = X3 +AX +B over Fq.

ψ1 = 1,

ψ2 = 2Y,

ψ3 = 3X4 + 6AX2 + 12BX −A2,

ψ4 = 4Y (X6 + 5AX4 + 20BX3 − 5A2X2 − 4ABX − 8B2 −A3)

and

ψ2m+1 = ψm+2 ψ
3
m − ψ3

m+1 ψm−1 if m ≥ 2,
2Y ψ2m = ψm (ψm+2 ψ

2
m−1 − ψm−2 ψ

2
m+1) if m ≥ 3.

Let gcd(m, q) = 1.

For odd m we have ψm ∈ Fq[X ] with degX(ψm) = (m2 − 1)/2.

For even m we have ψm ∈ Y Fq[X ] with
degX(ψm) = (m2 − 4)/2. (replace all powers of Y by the curve
equation.)
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Multiplication map revisited

Theorem
For m ≥ 3

[m](x, y) =

(

x− ψm−1 ψm+1

ψ2
m

,
ψm+2 ψ

2
m−1 − ψm−2 ψ

2
m+1

4y ψ3
m

)

.

Note: this shows that [m] is a rational map.
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Compute in a polynomial ring

Check equality π2(P ) + [q](P ) = [t](P ) in E[ℓ] by looking at
the polynomials corresponding to the x-coordinates of the point
on the left and right side, resp.

We compute the trace t modulo ℓ in the ring

Rℓ = Fq[X,Y ]/(Y 2 −X3 −AX −B,ψℓ(X))

If we want to check if p1(X) = p2(X) in Rℓ for two polynomials
p1(X), p2(X) we check whether

gcd(p1 − p2, ψℓ) 6= 1.

Exercise Given a point (x, y) on a curve in Weierstrass form.
You can write yq as h(x)y in Rℓ. Determine h(x) ∈ Fq[x].
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Example

Consider the curve E : Y 2 = X3 + 31X − 12 in Fq with q = 97.

Determine the trace of π modulo ℓ = 5.

The 5th division polynomial ψ5 is given by 5x12 − 18x10 − x9 −
25x8 − 40x7 − 39x6 + 7x5 + 3x4 − 14x3 + 26x2 + 40x+ 47

Given a point P = (x, y) in E[5] we work in
R5 = F97[x, y]/(y

2 − x3 − 31x+ 12, ψ5(x)).
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Computing in R5

π(x, y) =
[47 x11 + 11 x10 − 16 x9 + 8 x8 + 44 x7 + 8 x6 + 10 x5 + 12 x4 −
40 x3 + 42 x2 + 11 x+ 26,
(6 x11 + 45 x10 + 34 x9 + 28 x8 − 11 x7 + 3 x6 − 3 x5 + 2 x4 − 39 x3 −
48 x2 − x− 9)y].

π2(x, y) =
[−17 x11 + 2 x10 − 25 x9 − x8 + 28 x7 + 31 x6 + 25 x5 − 32 x4 +
45 x3 + 26 x2 + 36 x+ 34,
(34 x11 + 35 x10 − 8 x9 − 11 x8 − 48 x7 + 34 x6 − 8 x5 − 37 x4 −
21 x3 + 40 x2 + 11 x+ 48)y].

[q mod 5](x, y) = [2](x, y) =
[22 x11 + 17 x10 + 18 x9 + 40 x8 + 41 x7 − 13 x6 + 30 x5 + 11 x4 −
38 x3 + 7 x2 + 20 x+ 17,

(−11 x10 − 17 x9 − 48 x8 − 12 x7 + 17 x6 + 44 x5 − 10 x4 + 8 x3 +

38 x2 + 25 x+ 24)y]
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Find t such that π2(x, y) + [2](x, y) = [t]π(x, y)

π2(x, y) + [2]P =
[−14 x14 + 15 x13 − 20 x12 − 43 x11 − 10 x10 − 27 x9 + 5 x7 + 11 x6 +
45 x5 − 17 x4 + 30 x3 − 2 x2 + 35 x− 46,

(−11 x14 − 35 x13 − 26 x12 − 21 x11 + 25 x10 + 23 x9 + 4 x8 − 24 x7 +

9 x6 + 43 x5 − 47 x4 + 26 x3 + 19 x2 − 40 x− 32)y].

For t = 1 the point [t]π(x, y) = π(x, y) has a non-trivial gcd
with π2(x, y) + [2](x, y) in both its x- and y-coordinate.

Thus, t ≡ 1 mod 5.

In fact, t = −14 and therefore
#E(F97) = 97 + 1 − (−14) = 112 = 24 · 7.
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Complexity - very rough operation count

Each prime ℓ is about O(log q).

Fix ℓ.

Elements of Rℓ = Fq[X,Y ]/(Y 2 −X3 −AX −B,ψℓ)(X) have
size O(ℓ2 log q) = O(log3 q), since degψℓ = (ℓ2 − 1)/2.

Computing the Frobenius endomorphism in Rℓ takes O(log7 q)
bit operations.

Prime number theorem: need O(log q) primes ℓ.

Total cost: O(log8 q).
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Summary Schoof’s algorithm

Determine the trace t of the Frobenius endomorphism π modulo
small primes ℓ, in order to compute #E(Fq) = q + 1 − t.

Compute t mod ℓ in
Rℓ = Fq[X,Y ]/(Y 2 −X3 −AX −B,ψℓ(X)) whose size is
determined by the degree of ψℓ which is (ℓ2 − 1)/2).

Improvement:
Try to determine the trace modulo ℓ in a subgroup of E[ℓ] and
therefore determine a linear factor of the ℓth division polynomial
ψℓ.
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Characteristic polynomial revisited

The Frobenius endomorphism π is a linear operator on the
vector space E[ℓ] ∼= F

2
ℓ .

Its characteristic polynomial splits over F̄ℓ

T 2 − tT + q = (T − λ1)(T − λ2).

If λ1, λ2 ∈ Fℓ, we found two eigenvalues of π. We call ℓ an
Elkies prime.

Then there exist two points P1, P2 ∈ E[ℓ] such that
π(P1) = [λ1]P1 and π(P2) = [λ2]P2.

The points P1, P2 generate each a π-invariant subgroup of order
ℓ of E[ℓ].
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Compute the trace of the Frobenius in a subgroup of E[ℓ]

Characteristic equation T 2 − tT + q = (T − λ1)(T − λ2).

For λ1, λ2 ∈ Fℓ we get q = λ1 · λ2 and thus

t = λ1 + λ2 = λ1 + q/λ1.

Determining t in a subgroup means finding an eigenvalue of the
Frobenius in Fℓ.

New ’check equation’. Find λ ∈ {0, 1, . . . , ℓ− 1} such that

π(P ) = [λ](P )

for a non-trivial point of a subgroup of E[ℓ].
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Determine whether ℓ is an Elkies prime

Let E have a subgroup C of prime order ℓ. Then there exists an
elliptic curve E′ and an isogeny φ : E → E′ with kernel C.

The ℓth modular polynomial Φℓ is a polynomial of degree ℓ+ 1
in Fq[X,Y ]. Its roots are exactly the j-invariants of all
ℓ-isogeneous elliptic curves.

Theorem
Let E be an elliptic curve over Fq, not supersingular with
j-invariant j not equal to 0 or 1728.
Then E has a π-invariant subgroup C of order ℓ if and only if
the polynomial Φℓ(j, T ) has a root ̃ in Fq.

Note: ̃ is the j-invariant of an ℓ-isogeneous elliptic curve E′

which is isomorphic to E/C.
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Representing a ℓ-group C

Determine factor Fℓ of ψℓ in Fq[X] such that

(x, y) ∈ C ⇔ Fℓ(x) = 0.

Construct Fℓ by finding an degree-ℓ isogeny φ with kernel C.

We get

Fℓ(X) =
∏

±P∈C
P 6=P∞

(X − Px).

Degree: degX Fℓ = (ℓ− 1)/2.
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Complexity for the Elkies procedure

Compute the Frobenius and [λ]P in the ring
Fq[X,Y ]/(Y 2 −X3 −AX −B,Fℓ(X)) which has size
O(ℓ log q) = O(log2 q).

Overall complexity O(log5 q) bit operations.
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Atkin and SEA

If ℓ is not an Elkies prime we can use Atkin’s method to
compute t mod ℓ:
Determine the rth power of the Frobenius such that there is a
πr-invariant subgroup of E[ℓ]. Then t mod ℓ satisfies

t2 ≡ (ζr + 2 + ζ−1
r )q

for an rth root of unity.

Schoof-Elkies-Atkin algorithm

Compute the trace t modulo small primes ℓ until
∏
ℓ > 4

√
q.

For each ℓ use the modular polynomial Φℓ to decide
whether to use Elkies’ or Atkin’s procedure.

Determine the trace t in the Hasse interval using the
Chinese Remainder theorem.

Complexity of SEA: O(log6 q).
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Thank you!
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