Elliptic Curves over Q

Peter Birkner

Technische Universiteit Eindhoven

DIAMANT Summer School on Elliptic and Hyperelliptic Curve Cryptography

16 September 2008

What is an elliptic curve? (1)

An elliptic curve E over a field k in Weierstraß form can be given by the equation:

$$E: y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6.$$

- The coefficients a_1, a_2, a_3, a_4, a_6 are in k.
- We need that the partial derivatives

$$2y + a_1x + a_3$$
 and $3x^2 + 2a_2x + a_4 - a_1y$

do not vanish simultaneously for each point (x, y) over \overline{k} . This is to avoid singularities on the curve.

What is an elliptic curve? (2)

If $char(k) \neq 2,3$ we can always transform to short Weierstraß form:

$$E: y^2 = x^3 + ax + b \quad (a, b \in k)$$

- If the discriminant $\Delta = -16(4a^3 + 27b^2)$ of *E* is $\neq 0$, then the equation describes an elliptic curve without singular points.
- From now on $k = \mathbb{Q}$ and short Weierstraß form!
- The set of all points on *E* together with the point at infinity *P*_∞ forms an additive group. *P*_∞ is the neutral element in this group.

Example: elliptic curves (over the reals)

Example: non-elliptic curves (over the reals)

Group law for $y^2 = x^3 + ax + b$, char $(k) \neq 2,3$

The set of points on an elliptic curve together with P_{∞} forms an additive group (E, \oplus) .

- The neutral element in this group is P_{∞} .
- The negative of a point P = (x, y) is -P = (x, -y).
- For two points *P* = (*x*₁, *y*₁), *Q* = (*x*₂, *y*₂) with *P* ≠ ±*Q* we have *P* ⊕ *Q* = (*x*₃, *y*₃), where

$$x_3 = \left(\frac{y_2 - y_1}{x_2 - x_1}\right)^2 - x_1 - x_2, \quad y_3 = \left(\frac{y_2 - y_1}{x_2 - x_1}\right)(x_1 - x_3) - y_1$$

• For $P \neq \pm P$ we have $[2]P = (x_3, y_3)$, where

$$x_3 = \left(\frac{3x_1^2 + a}{2y_1}\right)^2 - 2x_1, \quad y_3 = \left(\frac{3x_1^2 + a}{2y_1}\right)(x_1 - x_3) - y_1$$

The graphical addition law

Addition: $P \oplus Q$

Doubling: [2]P

Order and torsion

- The order of a point *P* is the smallest positive integer *n* such that $[n]P = \underbrace{P \oplus \ldots \oplus P}_{n \text{ times}} = P_{\infty}$.
- If [n]P never adds up to P_{∞} , then the order of P is ∞ .
- The order of the neutral element P_{∞} is 1.

- The set of all points with finite order is a subgroup of the group of points. It is called the torsion subgroup of *E*.
- Similarly, the group of points with order ∞ , together with P_{∞} is called the non-torsion subgroup of *E*.

Example (part 1)

$$E: y^2 = x^3 - \frac{1}{36}x^2 - \frac{5}{36}x + \frac{25}{1296}$$
 over \mathbb{Q}

 Points of order 4
 Points of order 2

 $(0, -\frac{5}{36})$ $(\frac{5}{18}, 0)$
 $(0, \frac{5}{36})$ $(\frac{1}{6}, 0)$
 $(\frac{5}{9}, -\frac{35}{108})$ $(-\frac{5}{12}, 0)$

There are no more points (over \mathbb{Q}) of finite order!

Together with P_{∞} these points are all possible torsion points. The torsion subgroup of *E* is isomorphic to $\mathbb{Z}/2 \times \mathbb{Z}/4$.

The point $P = (\frac{77}{162}, \frac{170}{729})$ is a non-torsion point on *E*.

Example (part 2)

$$E: y^2 = x^3 - \frac{1}{36}x^2 - \frac{5}{36}x + \frac{25}{1296}$$
 over \mathbb{Q}

The point $P = (\frac{77}{162}, \frac{170}{729})$ has order ∞ and is thus a non-torsion point on the curve *E*.

The subgroup $\langle P \rangle$ generated by *P* is isomorphic to \mathbb{Z} via the mapping $\mathbb{Z} \to E(\mathbb{Q})$, $n \mapsto [n]P$.

Hence the group structure of *E* is $\mathbb{Z}/2 \times \mathbb{Z}/4 \times \mathbb{Z}^r$, where r > 0.

The number *r* is called rank of the elliptic curve.

There could be another point of order ∞ which is not a multiple of *P*. In this case the rank would be 2 or higher.

Which torsion groups are possible?

Theorem of Mazur

Let E/\mathbb{Q} be an elliptic curve. Then the torsion subgroup $E_{tors}(\mathbb{Q})$ of *E* is isomorphic to one of the following fifteen groups:

$$\mathbb{Z}/n$$
 for $n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10$ or 12
 $\mathbb{Z}/2 \times \mathbb{Z}/2n$ for $n = 1, 2, 3, 4$.

For example, there is no elliptic curve over \mathbb{Q} with a point of order 11, 13, 14 etc.

How to find torsion points? (part 1)

Theorem of Lutz-Nagell

Let E over \mathbb{Q} be an elliptic curve with short Weierstraß equation

$$y^2 = x^3 + ax + b \qquad (a, b \in \mathbb{Z}).$$

Then for all non-zero torsion points P we have:

- **①** The coordinates of *P* are in \mathbb{Z} , i.e. $x(P), y(P) \in \mathbb{Z}$
- If the order of *P* is greater than 2 (i.e. $y(P) \neq 0$), then $y(P)^2$ divides $4a^3 + 27b^2$.

How to find torsion points? (part 2)

Example

Let $p \in \mathbb{Z}$ be a prime and let $E: y^2 = x^3 + p^2$ be an elliptic curve over \mathbb{Q} . Since $x^3 + p^2 = 0$ has no solutions in \mathbb{Q} , there is no 2-torsion.

• Now,
$$4a^3 + 27b^2 = 27p^4$$
.

- Let (x, y) be a torsion point. Then we know that $x, y \in \mathbb{Z}$ and $y^2 | 27p^4$, thus $y \in \{\pm 1, \pm 3, \pm p, \pm p^2, \pm 3p, \pm 3p^2\}$.
- It is clear that (0,±p) ∈ E, and they can be checked to be points of order 3.

Reduction modulo p (part 1)

- Let *E* be an elliptic curve over \mathbb{Q} given by the equation $E: y^2 = x^3 + ax + b$ $(a, b \in \mathbb{Z})$.
- Let *p* be a prime. Then we can consider the curve equation "modulo *p*", i.e. we take *a* and *b* modulo *p*.
- The new equation E': y² = x³ + a'x + b' describes an elliptic curve if disc(E') ≠ 0, i.e. not a multiple of p.

Definition

We say that *E* has good reduction at *p* if the discriminant of *E* is not a multiple of *p*, otherwise *E* has bad reduction at *p*.

Reduction modulo *p* (part 2)

Example

Let *E* over \mathbb{Q} be given by $y^2 = x^3 + 3$. The discriminant of this curve is $\Delta = -3888 = -2^43^5$.

Thus the only primes of bad reduction are 2 and 3, and *E* modulo *p* is non-singular for all $p \ge 5$.

Let p = 5 and consider the reduction E' of E modulo 5. Then we have

$$E(\mathbb{Z}/5) = \{P_{\infty}, (1,2), (1,3), (2,1), (2,4), (3,0)\}.$$

Reduction modulo *p* (part 3)

Proposition

Let *E* over \mathbb{Q} be an elliptic curve and let *m* be a positive integer and *p* a prime number such that gcd(p,m) = 1. For *E* modulo *p* the reduction map modulo *p*

$$E(\mathbb{Q})[m] \to E'(\mathbb{Z}/p)$$

is injective.

Corollary

The number of *m*-torsion points of *E* over \mathbb{Q} divides the number of points over \mathbb{Z}/p .

Reduction modulo *p* (part 4)

Example $E: y^2 = x^3 + 3$ over \mathbb{Q}

- Reduction modulo 5 gives
 E(ℤ/5) = {P_∞, (1,2), (1,3), (2,1), (2,4), (3,0)}, i.e. the
 reduced curve has 6 points.
- Reducing the curve modulo 7 gives 13 points.
- Now let's assume $q \neq 5,7$ be prime.
- Proposition $\Rightarrow #E(\mathbb{Q})[q]$ divides 6 and $13 \Rightarrow #E(\mathbb{Q})[q] = 1$.

Reduction modulo *p* (part 5)

Example $E: y^2 = x^3 + 3$ over \mathbb{Q}

- *q* = 5 : Prop. ⇒ #*E*(ℚ)[5] divides 13, i.e. 5 | 13 if #*E*(ℚ)[5] is non-trivial. Hence #*E*(ℚ)[5] = 1.
- Same argument for q = 7: $\#E(\mathbb{Q})[7] = 1$.
- Outcome: $E(\mathbb{Q})$ has trivial torsion subgroup $\{P_{\infty}\}$.

But (1,2) is a point on the curve, so it must be a point with infinite order, and the rank is at least 1.

Rank records for elliptic curves over $\ensuremath{\mathbb{Q}}$

T	$B(T) \ge$	Author(s)
0	28	Elkies (2006)
z /2 z	<u>18</u>	Elkies (2006)
z /3 z	<u>13</u>	Eroshkin (2007,2008)
z /4 z	12	Elkies (2006)
z /5 z	<u>6</u>	Dujella - Lecacheux (2001)
z /6 z	<u>8</u>	Eroshkin (2008), Dujella - Eroshkin (2008), Elkies (2008), Dujella (2008)
z /7 z	<u>5</u>	Dujella - Kulesz (2001), Elkies (2006)
z /8 z	<u>6</u>	Elkies (2006)
z /9 z	<u>3</u>	Dujella (2001), MacLeod (2004), Eroshkin (2006), Eroshkin - Dujella (2007)
z /10 z	4	Dujella (2005), Elkies (2006)
z /12 z	<u>3</u>	Dujella (2001,2005,2006), Rathbun (2003,2006)
z/2z × z/2z	<u>14</u>	Elkies (2005)
$z/2z \times z/4z$	<u>8</u>	Elkies (2005), Eroshkin (2008), Dujella - Eroshkin (2008)
$z/2z \times z/6z$	<u>6</u>	Elkies (2006)
z/2z × z/8z	<u>3</u>	Connell (2000), Dujella (2000,2001,2006), Campbell - Goins (2003), Rathbun (2003,2006) Flores - Jones - Rollick - Weigandt (2007)

http://web.math.hr/~duje/tors/tors.html

How to construct elliptic curves with prescribed torsion subgroup?

TABLE 3. Parametrization of torsion structures

1. 0: $y^2 = x^3 + ax^2 + bx + c$; $\Delta_1(a, b, c) \neq 0$, $\Delta_1(a, b, c) = -4a^3c + a^2b^2 + 18abc - 4b^3 - 27c^2.$ 2. $Z/2Z: y^2 = x(x^2 + ax + b); \Delta_1(a, b) \neq 0, \Delta_1(a, b) = a^2b^2 - 4b^3.$ 3. $Z/2Z \times Z/2Z$: $u^2 = x(x+r)(x+s)$, $r \neq 0 \neq s \neq r$. 4. $Z/3Z: y^2 + a_3xy + a_3y = x^3; \Delta(a_1, a_3) = a_1^3a_3^3 - 27a_3^4 \neq 0.$ (The form E(b, c) is used in all parametrizations below where in E(b, c) $y^{2} + (1-c)xy - by = x^{3} - bx^{2}$, (0, 0) is a torsion point of maximal order, $\Delta(b, c) = \alpha^4 b^3 - 8\alpha^2 b^4 - \alpha^3 b^3 + 36\alpha b^4 + 16b^5 - 27b^4$, and $\alpha = 1 - c$.) 5. Z/4Z: $E(b, c), c = 0, \Delta(b, c) = b^4(1+16b) \neq 0$. 6. $Z/4Z \times Z/2Z$: $E(b, c), b = v^2 - \frac{1}{10}, v \neq 0, \pm \frac{1}{4}, c = 0.$ 7. $Z/8Z \times Z/2Z$: E(b, c), b = (2d-1)(d-1), c = (2d-1)(d-1)/d. $d = \alpha(8\alpha + 2)/(8\alpha^2 - 1), d(d - 1)(2d - 1)(8d^2 - 8d + 1) \neq 0,$ 8. Z/8Z: $E(b, c), b = (2d-1)(d-1), c = (2d-1)(d-1)/d, \Delta(b, c) \neq 0$. 9. Z/6Z: E(b, c), $b = c + c^2$, $\Delta(b, c) = c^6(c+1)^3(9c+1) \neq 0$. 10. $Z/6Z \times Z/2Z$; E(b, c), $b = c + c^2$, $c = (10 - 2\alpha)/(\alpha^2 - 9)$, $\Delta(b, c) = c^{6}(c+1)^{3}(9c+1) \neq 0.$ 11. Z/12Z: $E(b, c), b = cd, c = fd - f, d = m + \tau, f = m/(1 - \tau),$ $m = (3\tau - 3\tau^2 - 1)/(\tau - 1), \Delta(b, c) \neq 0.$ 12. Z/9Z: E(b, c), b = cd, c = fd - f, d = f(f - 1) + 1, $\Delta(b, c) \neq 0$. 13. Z/5Z: $E(b, c), b = c, \Delta(b, c) = b^5(b^2 - 11b - 1) \neq 0.$ 14. Z/10Z: E(b, c), b = cd, c = fd - f, $d = f^2/(f - (f - 1)^2)$, $f \neq (f - 1)^2$, $\Delta(b, c) \neq 0$. 15. Z/7Z: $E(b, c), b = d^3 - d^2, c = d^2 - d, \Delta(b, c) = d^7(d-1)^7(d^3 - 8d^2 + 5d + 1) \neq 0.$

(Kubert: Universal Bounds on the Torsion of Elliptic Curves, 1976)

Construction of an elliptic curve with torsion $\mathbb{Z}/2 \times \mathbb{Z}/4$ and rank > 0

- Kubert's curve $E(b,c): Y^2 + (1-c)XY bY = X^3 bX^2$
- Apply transformation $y = Y + \frac{(1-c)X-b}{2}$ and x = X to get the form

$$E'(b,c): y^2 = x^3 + \frac{(c-1)^2 - 4b}{4}x^2 + \frac{b(c-1)}{2}x + \frac{b^2}{4}x^2 + \frac{b(c-1)}{4}x + \frac{b^2}{4}x^2 + \frac{b(c-1)}{4}x + \frac{b^2}{4}x^2 + \frac{b(c-1)}{4}x + \frac{$$

- For $\mathbb{Z}/2 \times \mathbb{Z}/4$ use c = 0 and $b = v^2 \frac{1}{16}$, $v \neq 0, \pm \frac{1}{4}$ (see entry #6 of the previous slide)
- The curve $E'(v^2 \frac{1}{16}, 0)$ has torsion subgroup $\mathbb{Z}/2 \times \mathbb{Z}/4$

How to get rank > 0?

Points of order 4	Points of order 2
$(0, -\frac{1}{2}v^2 + \frac{1}{32})$	$(v^2 - \frac{1}{16}, 0)$
$(0, \frac{1}{2}v^2 - \frac{1}{32})$	$(-\frac{1}{8}+\frac{1}{2}v, 0)$
$(2v^2 - \frac{1}{8}, -\frac{1}{8}v(16v^2 - 1))$	$(-\frac{1}{8}-\frac{1}{2}\nu, 0)$
$(2v^2 - \frac{1}{8}, \frac{1}{8}v(16v^2 - 1))$	

Try to find a point on the curve with *x*-coordinate different from the *x*-coordinate of all torsion points, for instance $x_0 = v^2 + \frac{175}{1296}$.

How to get rank > 0?

Plug in x_0 into curve equation $E'(v^2 - \frac{1}{16}, 0)$ and make monic:

$$y^2 = v^4 + \frac{175}{1458}v^2 + \frac{113569}{8503056}$$

To find solutions to this, we replace $u = v^2$ on the right-hand side and get

$$u^2 + \frac{175}{1458}u + \frac{113569}{8503056}.$$

Now, we require that u and $u^2 + \frac{175}{1458}u + \frac{113569}{8503056}$ are squares in \mathbb{Q} .

This leads to the elliptic curve

$$E_{gen}: z^2 = u \left(u^2 + \frac{175}{1458} u + \frac{113569}{8503056} \right).$$

How to get rank > 0?

$$E_{gen}: z^2 = u^3 + \frac{175}{1458}u^2 + \frac{113569}{8503056}u$$

Finding a point (u, z) on this curve, where u is a square, ensures that $u^2 + \frac{175}{1458}u + \frac{113569}{8503056}$ is a square and that we can write $u = v^2$.

With this we have a solution to $y^2 = v^4 + \frac{175}{1458}v^2 + \frac{113569}{8503056}$.

Using this *v* as parameter for $E'(v^2 - \frac{1}{16}, 0)$ we know that the curve has a point with *x*-coordinate $v^2 + \frac{175}{1296}$ and this point is a non-torsion point. Hence, rank of E' > 0.

The curve E_{gen} has infinitely many points and thus there are infinitely many parameters v to generate a curve with torsion $\mathbb{Z}/2 \times \mathbb{Z}/4$ and rank at least 1.

Thank you for your attention!