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What is an elliptic curve? (1)

An elliptic curve E over a field k in Weierstral3 form can be
given by the equation:

E :y2+a1xy+a3y =x +a2x2—|—a4x+a6.
@ The coefficients a;,as,a3,a4,a6 are in k.
@ We need that the partial derivatives
2y+aix+asz and 3%+ 2a0x +as — apy

do not vanish simultaneously for each point (x,y) over k.
This is to avoid singularities on the curve.



What is an elliptic curve? (2)

If char(k) # 2,3 we can always transform to short Weierstrafi3
form:
E:y"=x+ax+b (a,bck)

@ If the discriminant A = —16(4a® +27b%) of E is # 0,
then the equation describes an elliptic curve without
singular points.

@ From now on k = QQ and short Weierstraf3 form!

@ The set of all points on E together with the point
at infinity P forms an additive group. P. is the
neutral element in this group.



Example: elliptic curves (over the reals)




Example: non-elliptic curves (over the reals)
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Group law for y? = x> 4 ax + b, char(k) # 2,3

The set of points on an elliptic curve together with P, forms an
additive group (E,®).

@ The neutral element in this group is Pe.

@ The negative of a point P = (x,y) is —P = (x, —y).

@ For two points P = (x1,y1), Q = (x2,y2) with P # +£0 we
have P& Q = (x3,y3), where

- ()’Z_yl)z_xl_x 33 = (yz—y1>(x _x)—y
3 X7 — x| 2 3 X7 —x 1 3 1

@ For P # +£P we have [2]P = (x3,y3), where

3x2+a\2 3x2+a
X3=( 1 )—2)61, Y3=(217y1>(X1—X3)—y1




The graphical addition law
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Order and torsion

@ The order of a point P is the smallest positive integer n
suchthat [n|P=P®...®P = P.
————

ntimes
@ If [n]P never adds up to P., then the order of P is .

@ The order of the neutral element P, is 1.

@ The set of all points with finite order is a subgroup of the
group of points. It is called the torsion subgroup of E.

@ Similarly, the group of points with order o, together with
P., is called the non-torsion subgroup of E.



Example (part 1)

E:y?=x— %xz — 36x+ 1296 over Q

Points of order 4 Points of order 2
5

(0’ 5 36) (figa 0)

(§ 5%) (_%7 0)

(§ T)

There are no more points (over Q) of finite order!

Together with P, these points are all possible torsion points.
The torsion subgroup of E is isomorphic to Z/2 x Z /4.

The point P = ({5, 113) is a non-torsion point on E.



Example (part 2)

E:y2:x3—31—6x2—35—6x+%g6 over Q

The point P = ({5, 119) has order « and is thus a non-torsion

point on the curve E.

The subgroup (P) generated by P is isomorphic to Z via the
mapping Z — E(Q), n — [n]P.

Hence the group structure of E is Z/2 x Z/4 x Z", where r > 0.
The number r is called rank of the elliptic curve.

There could be another point of order o which is not a multiple
of P. In this case the rank would be 2 or higher.



Which torsion groups are possible?

Theorem of Mazur

Let E£/Q be an elliptic curve. Then the torsion subgroup Eiors(Q)
of E is isomorphic to one of the following fifteen groups:

Z/nforn=1,2,3,4,5,6,7,8,9,10 or 12
7.)2x Z/2n forn=1,2,3,4.

For example, there is no elliptic curve over Q with a point of
order 11, 13, 14 etc.



How to find torsion points? (part 1)

Theorem of Lutz-Nagell
Let E over Q be an elliptic curve with short Weierstral3 equation

V- =x+ax+b (a,b € Z).
Then for all non-zero torsion points P we have:

@ The coordinates of P are in Z, i.e. x(P), y(P) € Z

@ If the order of P is greater than 2 (i.e. y(P) # 0), then
y(P)? divides 4a’ +27b?.



How to find torsion points? (part 2)

Example

Let p € Z be a prime and let E : y*> = x> + p* be an elliptic curve
over Q. Since x> + p> = 0 has no solutions in Q, there is no
2-torsion.

@ Now, 44’ +27b* = 27p*.

@ Let (x,y) be a torsion point. Then we know that x,y € Z and
y?|27p*, thus y € {£1,43,£p,+p? £3p, £3p?}.

@ ltis clear that (0,4p) € E, and they can be checked to be
points of order 3.



Reduction modulo p (part 1)

@ Let E be an elliptic curve over Q given by the equation
E:y*=x+ax+b (a,beZ).

@ Let p be a prime. Then we can consider the curve
equation “modulo p”, i.e. we take a and » modulo p.

@ The new equation E’ : y?> = x> +d/x+ b’ describes an elliptic
curve if disc(E’) # 0, i.e. not a multiple of p.

Definition
We say that E has good reduction at p if the discriminant of E is
not a multiple of p, otherwise E has bad reduction at p.



Reduction modulo p (part 2)

Example
Let E over Q be given by y> = x> + 3. The discriminant of this
curve is A = —3888 = —243°.

Thus the only primes of bad reduction are 2 and 3, and E
modulo p is non-singular for all p > 5.

Let p =5 and consider the reduction E’ of E modulo 5. Then we
have

E(2/5) = {P-,(1,2),(1,3),(2,1),(2,4),(3,0)}.



Reduction modulo p (part 3)

Proposition

Let E over Q be an elliptic curve and let m be a positive integer
and p a prime number such that gcd(p,m) = 1. For E modulo p
the reduction map modulo p

E(Q)[m] — E'(Z/p)
is injective.

Corollary
The number of m-torsion points of E over Q divides the number

of points over Z/p.



Reduction modulo p (part 4)

Example E : y> = x> + 3 over Q

@ Reduction modulo 5 gives
E(Z)5) ={P.,(1,2),(1,3),(2,1),(2,4),(3,0)}, i.e. the
reduced curve has 6 points.

@ Reducing the curve modulo 7 gives 13 points.
@ Now let's assume ¢ # 5,7 be prime.

@ Proposition = #E(Q)][g| divides 6 and 13 = #E(Q)[q] = 1.



Reduction modulo p (part 5)

Example E : y> = x>+ 3 over Q

@ g =>5:Prop. = #E(Q)[5] divides 13, i.e. 5|13 if #£(Q)[5] is
non-trivial. Hence #E(Q)[5] = 1.

@ Same argument for g =7: #E(Q)[7] = 1.

@ Outcome: E(Q) has trivial torsion subgroup {P.}.

But (1,2) is a point on the curve, so it must be a point with
infinite order, and the rank is at least 1.



Rank records for elliptic curves over Q

T B(T)>= Author(s)

0

N
@

Elkies (2006)

z/22 18 Elkies (2006)
z/32 13 Eroshkin (2007,2008)
z/42 12 Elkies (2006)
z/52 6 Dujella - Lecacheux (2001)
z/62 8 Eroshkin (2008), Dujella - Eroshkin (2008), Elkies (2008), Dujella (2008)
z/72 5 Dujella - Kulesz (2001), Elkies (2006)
z/82 6 Elkies (2006)
z/9z El Dujella (2001), MacLeod (2004), Eroshkin (2006), Eroshkin - Dujella (2007)
2/102 4 Dujella (2005), Elkies (2006)
2/12z 3 Dujella (2001,2005,2006), Rathbun (2003,2006)
2/2z x 2/22 14 Elkies (2005)
2/22 x 2/42 8 Elkies (2005), Eroshkin (2008), Dujella - Eroshkin (2008)
2/22 x Z/6Z 6 Elkies (2006)
2/22 x 2/82 3

Connell (2000), Dujella (2000,2001,2006), Campbell - Goins (2003), Rathbun (2003,2006)
Flores - Jones - Rollick - Weigandt (2007)

http://web.math.hr/~duje/tors/tors.html


http://web.math.hr/~duje/tors/tors.html

How to construct elliptic curves with prescribed
torsion subgroup?

TABLE 3. Parametrization of torsion structures

1. 0: y® = a®+ax?+bax+c; A(a, b,c) # O,
A(a, b, ¢) = —4a’c+a??+ 18abc — 4% — 27c?,
2. Z/2Z: y* = z(a®+ax+b); A(a, b) # 0, A(a, b) = a?b?—4b%
3. Z)2ZXZ)2Z: 4 = a(x+7r)(@+8), r £ OF# s #7.
4. Z/3Z: y*+ aywy +agy = 2*; A(a,y, a5) = a,%a,®—27a, # 0.

(The form E(b, ¢) is used in all parametrizations below where in E(b, ¢)
Y2+ (1 —c)zy —by = 23— ba?, (0, 0) is a torsion point of maximal order,
A(d, ¢) = b — 8ab® — a%b3 + 36ab + 16b° — 274, and o = 1—¢.)

8. Z/4Z: E(b,c), ¢ = 0, A(b, ¢) = bé(1+16b) # 0.
6. Z/4ZxZ/2Z: E(bc), b =v*— 5, v £ 0, +},¢=0.
7. Z/8ZxZ/2Z: E(b,c), b = (2d—1)(d—1), ¢ = (2d—1)(d—-1)/d,
d = a(8a+2)/(8at—1), d(d—1)(2d — 1)(8d*—8d +1) # 0.
Z/8Z: E(b,c¢), b = (2d—1)(d—1), ¢ = (2d—1)(d—1)/d, A(d,¢) # 0.
Z/8Z: E(b,c), b = c+c?, A(b,c) = ¢¥(c+1)%9+1) # 0.
10. Z/8Zx2/2Z: E(b,c), b = c+¢? ¢ = (10—2a)/(a®~9),
A(b, ¢) = ¢%c+1)%9c+1) # 0.
.« Z/12Z: E(b,c), b = cd, ¢ = fd—f, d = m+7, f = m/(1—1),
m = (3r—-372~1)/(r—1), A(b,¢c) # 0.
12. Z/9Z: E(b,¢), b = cd, ¢ = fd—f, d = f(f—1)+1, A(b,¢) # 0.
13. Z/5Z: E(b,c), b = ¢, A(b,¢) = b5(b2—11b—-1) # 0.
14. Z/10Z: E(b,c), b = cd, ¢ = fd—f, d = f*/(f—(f—1)%), f # (f—=1)% A(b,¢) # 0.
16. Z/1Z: E(b,¢c), b = d3—d?, ¢ = d*—d, A(b,¢) = d"(d—1)"(d*—8d%+bd+1) # 0.

®®

1

=

(Kubert: Universal Bounds on the Torsion of Elliptic Curves, 1976)



Construction of an elliptic curve with torsion Z/2 x 7. /4
and rank >0

@ Kubert's curve E(b,c) : Y2+ (1 —c)XY —bY = X — bX?

@ Apply transformation y =Y + W and x = X to get the

form
(c—=1)>—4b 5 b(c—1) b*

E'(b,c):y* =x° —
(byc):y"=x"+ ) x°+ 5 x+4

@ ForZ/2xZ/4usec=0andb=1v>— &, v#0,+5

(see entry #6 of the previous slide)

@ The curve E'(»* — %,0) has torsion subgroup Z/2 x Z /4



How to get rank > 07?

Points of order 4 Points of order 2
0, =5 +35) (v~ &, 0)

0, 12— ) (—%+13v, 0)
(2v2—%, —%v(16v2—1)) (—é—%v, 0)
(20 — ¢, sv(16v* —1))

Try to find a point on the curve with x-coordinate different from

the x-coordinate of all torsion points, for instance xo = v* + 1.



How to get rank > 07

Plug in xo into curve equation E'(v> — %,0) and make monic:

s e, 175 5 113569
Y Y T 458" T 8503056

To find solutions to this, we replace u = v on the right-hand
side and get

175 113569
1458 " 8503056

i 2 175 113569 i
Now, we require that u and u” + ;551 + gsp3056 @re squares in Q.

u2+

This leads to the elliptic curve

Egen 2= u(u2+ 175 113569 >

1458" 1 8503056



How to get rank > 07

175 , 113569

2
1458" 8503056

Egen iz =+

Finding a point (u,z) on this curve, where u is a square, ensures
that u? + L2 u + 359 is a square and that we can write u = 2.

With this we have a solution to y? = v* + L1252 + 1356

Using this v as parameter for E’(v? — %, 0) we know that the
curve has a point with x-coordinate v> + % and this point is

a non-torsion point. Hence, rank of £’ > 0.

The curve E,,, has infinitely many points and thus there are
infinitely many parameters v to generate a curve with torsion
Z])2 xZ/4 and rank at least 1.



Thank you for your attention!



	Motivation

