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What is an elliptic curve? (1)

An elliptic curve E over a field k in Weierstraß form can be
given by the equation:

E : y2 +a1xy+a3y = x3 +a2x2 +a4x+a6.

The coefficients a1,a2,a3,a4,a6 are in k.

We need that the partial derivatives

2y+a1x+a3 and 3x2 +2a2x+a4−a1y

do not vanish simultaneously for each point (x,y) over k.
This is to avoid singularities on the curve.



What is an elliptic curve? (2)

If char(k) 6= 2,3 we can always transform to short Weierstraß
form:

E : y2 = x3 +ax+b (a,b ∈ k)

If the discriminant ∆ =−16(4a3 +27b2) of E is 6= 0,
then the equation describes an elliptic curve without
singular points.

From now on k = Q and short Weierstraß form!

The set of all points on E together with the point
at infinity P∞ forms an additive group. P∞ is the
neutral element in this group.



Example: elliptic curves (over the reals)

E1 : y2 = x3− x, ∆ 6= 0 E2 : y2 = x3−3x+3, ∆ 6= 0



Example: non-elliptic curves (over the reals)

E3 : y2 = x3 + x2, ∆ = 0
“Node”

E4 : y2 = x3, ∆ = 0
“Cusp”



Group law for y2 = x3 +ax+b, char(k) 6= 2,3

The set of points on an elliptic curve together with P∞ forms an
additive group (E,⊕).

The neutral element in this group is P∞.

The negative of a point P = (x,y) is −P = (x,−y).

For two points P = (x1,y1), Q = (x2,y2) with P 6=±Q we
have P⊕Q = (x3,y3), where

x3 =
(y2− y1

x2− x1

)2
− x1− x2, y3 =

(y2− y1

x2− x1

)
(x1− x3)− y1

For P 6=±P we have [2]P = (x3,y3), where

x3 =
(3x2

1 +a
2y1

)2
−2x1, y3 =

(3x2
1 +a
2y1

)
(x1− x3)− y1



The graphical addition law
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We now show how to turn the set of points of E into a group with group operation denoted by ⊕.
For this we visualize it over the reals as in Figure 13.1 and assume h(x) = 0.

Figure 13.1 Group law on elliptic curve y2 = f(x) over R.
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To add two points P = (x1, y1) and Q = (x2, y2) in general position one draws a line connecting
them. There is a third point of intersection. Mirroring this point at the x-axis gives the sum P ⊕ Q.
The same construction can be applied to double a point where the connecting line is replaced by the

tangent at P .

Furthermore, we need to define the sum of two points with the same x-coordinate since for them
the group operation cannot be performed as stated. As y2 = f(x) there are at most 2 such points
(x1, y1) and (x1,−y1). Furthermore, we have to find the neutral element of the group.

The way out is to include a further point P∞ called the point at infinity. It can be visualized as

lying far out on the y-axis such that any line x = c, for some constant c, parallel to the y-axis passes
through it. This point is the neutral element of the group. Hence, the line connecting (x1, y1) and
(x1,−y1) passes through P∞. As it serves as the neutral element, the inflection process leaves it
unchanged such that (x1, y1) ⊕ (x1,−y1) = P∞, i.e., (x1,−y1) = −P .

This explanation might sound a little like hand-waving and only applicable to R. We now derive
the addition formulas for an arbitrary field K , which hold universally. For a proof we refer to
Chapter 4.

TakeP #= Qwith x1 #= x2 as above and let us compute the coordinates ofR = P⊕Q = (x3, y3).
The intersecting line has slope

λ =
y1 − y2

x1 − x2

and passes through P . Its equation is thus given by

y = λx +
x1y2 − x2y1

x1 − x2
·

Addition: P⊕Q Doubling: [2]P



Order and torsion

The order of a point P is the smallest positive integer n
such that [n]P = P⊕ . . .⊕P︸ ︷︷ ︸

n times

= P∞.

If [n]P never adds up to P∞, then the order of P is ∞.

The order of the neutral element P∞ is 1.

The set of all points with finite order is a subgroup of the
group of points. It is called the torsion subgroup of E.

Similarly, the group of points with order ∞, together with
P∞ is called the non-torsion subgroup of E.



Example (part 1)

E : y2 = x3− 1
36 x2− 5

36 x+ 25
1296 over Q

Points of order 4
(0, − 5

36)
(0, 5

36)
(5

9 , − 35
108)

(5
9 , 35

108)

Points of order 2
( 5

18 , 0)
(1

6 , 0)
(− 5

12 , 0)

There are no more points (over Q) of finite order!

Together with P∞ these points are all possible torsion points.
The torsion subgroup of E is isomorphic to Z/2×Z/4.

The point P = ( 77
162 , 170

729) is a non-torsion point on E.



Example (part 2)

E : y2 = x3− 1
36 x2− 5

36 x+ 25
1296 over Q

The point P = ( 77
162 , 170

729) has order ∞ and is thus a non-torsion
point on the curve E.

The subgroup 〈P〉 generated by P is isomorphic to Z via the
mapping Z→ E(Q), n 7→ [n]P.

Hence the group structure of E is Z/2×Z/4×Zr, where r > 0.

The number r is called rank of the elliptic curve.

There could be another point of order ∞ which is not a multiple
of P. In this case the rank would be 2 or higher.



Which torsion groups are possible?

Theorem of Mazur

Let E/Q be an elliptic curve. Then the torsion subgroup Etors(Q)
of E is isomorphic to one of the following fifteen groups:

Z/n for n = 1,2,3,4,5,6,7,8,9,10 or 12

Z/2×Z/2n for n = 1,2,3,4.

For example, there is no elliptic curve over Q with a point of
order 11, 13, 14 etc.



How to find torsion points? (part 1)

Theorem of Lutz-Nagell

Let E over Q be an elliptic curve with short Weierstraß equation

y2 = x3 +ax+b (a,b ∈ Z).

Then for all non-zero torsion points P we have:

1 The coordinates of P are in Z, i.e. x(P), y(P) ∈ Z

2 If the order of P is greater than 2 (i.e. y(P) 6= 0), then
y(P)2 divides 4a3 +27b2.



How to find torsion points? (part 2)

Example

Let p ∈ Z be a prime and let E : y2 = x3 + p2 be an elliptic curve
over Q. Since x3 + p2 = 0 has no solutions in Q, there is no
2-torsion.

Now, 4a3 +27b2 = 27p4.

Let (x,y) be a torsion point. Then we know that x,y ∈ Z and
y2 |27p4, thus y ∈ {±1,±3,±p,±p2,±3p,±3p2}.

It is clear that (0,±p) ∈ E, and they can be checked to be
points of order 3.



Reduction modulo p (part 1)

Let E be an elliptic curve over Q given by the equation
E : y2 = x3 +ax+b (a,b ∈ Z).

Let p be a prime. Then we can consider the curve
equation “modulo p”, i.e. we take a and b modulo p.

The new equation E ′ : y2 = x3 +a′x+b′ describes an elliptic
curve if disc(E ′) 6= 0, i.e. not a multiple of p.

Definition
We say that E has good reduction at p if the discriminant of E is
not a multiple of p, otherwise E has bad reduction at p.



Reduction modulo p (part 2)

Example
Let E over Q be given by y2 = x3 +3. The discriminant of this
curve is ∆ =−3888 =−2435.

Thus the only primes of bad reduction are 2 and 3, and E
modulo p is non-singular for all p≥ 5.

Let p = 5 and consider the reduction E ′ of E modulo 5. Then we
have

E(Z/5) = {P∞,(1,2),(1,3),(2,1),(2,4),(3,0)}.



Reduction modulo p (part 3)

Proposition
Let E over Q be an elliptic curve and let m be a positive integer
and p a prime number such that gcd(p,m) = 1. For E modulo p
the reduction map modulo p

E(Q)[m]→ E ′(Z/p)

is injective.

Corollary
The number of m-torsion points of E over Q divides the number
of points over Z/p.



Reduction modulo p (part 4)

Example E : y2 = x3 +3 over Q

Reduction modulo 5 gives
E(Z/5) = {P∞,(1,2),(1,3),(2,1),(2,4),(3,0)}, i.e. the
reduced curve has 6 points.

Reducing the curve modulo 7 gives 13 points.

Now let’s assume q 6= 5,7 be prime.

Proposition⇒ #E(Q)[q] divides 6 and 13⇒ #E(Q)[q] = 1.



Reduction modulo p (part 5)

Example E : y2 = x3 +3 over Q

q = 5 : Prop.⇒ #E(Q)[5] divides 13, i.e. 5 |13 if #E(Q)[5] is
non-trivial. Hence #E(Q)[5] = 1.

Same argument for q = 7 : #E(Q)[7] = 1.

Outcome: E(Q) has trivial torsion subgroup {P∞}.

But (1,2) is a point on the curve, so it must be a point with
infinite order, and the rank is at least 1.



Rank records for elliptic curves over Q

http://web.math.hr/~duje/tors/tors.html

http://web.math.hr/~duje/tors/tors.html


How to construct elliptic curves with prescribed
torsion subgroup?
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paper, which, although not the earliest, is probably the most convenient

reference, we see immediately that no elliptic curve over Q can have a

torsion point defined over Q of any of these orders. Mazur and Tate [20],

and independently Blass [3], recently proved that rational points of order

13 do not exist on elliptic curves defined over Q. I t is a classical (and easy)

result of Lind [14] that points of order 16 are impossible.

Thus we need examine only torsion whose order involves the primes

2, 3, 5, 7. Cyclic torsion groups Z/NZ exist and are parametrizable for

N = 1,..., 10 and N = 12, and the subgroup Z/NZxZ/2Z exists and is

parametrizable for N = 2, 4, 6, 8. The parametrizations are given in

Table 3. Accordingly, it remains only to check that Z/35Z, Z/10Z x Z/2Z}

TABLE 3. Parametrization of torsion structures

1. 0: 2/
2
 = x

3
 + ax

z
 + bx + c; Ax(a, b, c) & 0,

A^a.&.c) = -4a
3
c + a

2
6

2
+18a&c-4&

3
-27c

2
.

2. Z/2Z-. y
2
 = x(x

2
 + ax + b); Ax(a, b) ^ 0, A^a.b) = a

2
b

2
-4b

3
.

3. Z/2ZxZ/2Z: y
2
 = x{x+r)(x + s), r ^ 0 5* s ^ r.

4. Z/ZZ: y
2
 + axxy + ajy = x

3
; A(ax, o3) = a1

3
a3

3
-27a3

4
 jt 0.

(The form E(b, c) is used in all parametrizations below -where in E{b, c)

y
2
 + (l — c)xy — by = x

3
 — bx

2
, (0, 0) is a torsion point of maximal order,

A(6,c) = a
4
6

3
-8a

2
6

4
-a

3
6

3
 + 36a6

4
+166

5
-276

4
, and a = 1-c.)

5. Z/4Z: E(b,c), c = 0, A(b,c) = 6
4
(1 +166) ^ 0.

6. Z/4ZXZ/2Z: E(b, c), 6 = v
2
- ^, v * 0, ± \, c = 0.

7. Z/8ZxZ/2Z:E(b,c), b = (2d-l){d-l), c = (2d-l)(d-l)/d,

d = a(8a + 2)/(8a
2
-l), d(d- l){2d- I)(8d

2
-8d+ 1) ^ 0.

8. Z/8Z: E(b, c), 6 = {2d- l){d- 1), c = (2d- l)(d- l)/d, A(6, c) ^ 0.

9. Z/ZZ: E(b,c), b = c + c
2
, A(6,c) = c

6
(c+l)

3
(9c+l) ^ 0.

10. Z/6ZxZ/2Z: E{b,c), b = c + c
2
, c = (10-2a)/(a

2
-9),

A(6,c) = c
6
(c+l)

3
(9c+l) ?* 0.

11. Z/12Z: E(b,c), b = cd,c =fd-f, d = m + r,f = m/(l-r),

m = ( 3 T - 3 T
2

- 1 ) / ( T - 1 ) , A(6,C) ^ 0.

12. Z/9Z: E(b, c), b = cd, c = / d - / , rf = / ( / - 1 ) +1 , A(6, c) ± 0.

13. Z/5Z: E{b,c), b = c, A(6, c) = 6
5
(6

2
- 116-1) ^ 0.

14. Z/10Z: ^(6,0), 6 = cd, c =fd-f, d = f
2
/(f-(f-1)

2
), / * (/-1)

2
, A(6,c) * 0.

15. Z/1Z: E(b,c), b = d
3
-d

2
, c = d

2
-d, A(6,c) = d

f
'(d-iy(d

3
-8d

2
 + 5d+l) * 0.

, Z/18Z, and Z/12Z x Z/2Z are impossible. The cases Z/IQZ x Z/2Z

and Z/12Z x Z/2Z are easy, since such curves would be 2-isogenous to one

with a rational 20-cycle or a rational 24-cycle and so correspond to a point

of X0(20) or X0(24). The cases Z/35Z, Z/25Z, and Z/18Z are dealt with

explicitly below.

(Kubert: Universal Bounds on the Torsion of Elliptic Curves, 1976)



Construction of an elliptic curve with torsion Z/2×Z/4
and rank > 0

Kubert’s curve E(b,c) : Y 2 +(1− c)XY −bY = X3−bX2

Apply transformation y = Y + (1−c)X−b
2 and x = X to get the

form

E ′(b,c) : y2 = x3 +
(c−1)2−4b

4
x2 +

b(c−1)
2

x+
b2

4

For Z/2×Z/4 use c = 0 and b = v2− 1
16 , v 6= 0,±1

4
(see entry #6 of the previous slide)

The curve E ′(v2− 1
16 ,0) has torsion subgroup Z/2×Z/4



How to get rank > 0?

Points of order 4

(0, −1
2 v2 + 1

32)

(0, 1
2 v2− 1

32)

(2v2− 1
8 , −1

8 v(16v2−1))

(2v2− 1
8 , 1

8 v(16v2−1))

Points of order 2

(v2− 1
16 , 0)

(−1
8 + 1

2 v, 0)

(−1
8 −

1
2 v, 0)

Try to find a point on the curve with x-coordinate different from
the x-coordinate of all torsion points, for instance x0 = v2 + 175

1296 .



How to get rank > 0?

Plug in x0 into curve equation E ′(v2− 1
16 ,0) and make monic:

y2 = v4 +
175
1458

v2 +
113569
8503056

To find solutions to this, we replace u = v2 on the right-hand
side and get

u2 +
175
1458

u+
113569
8503056

.

Now, we require that u and u2 + 175
1458 u+ 113569

8503056 are squares in Q.

This leads to the elliptic curve

Egen : z2 = u
(

u2 +
175

1458
u+

113569
8503056

)
.



How to get rank > 0?

Egen : z2 = u3 +
175
1458

u2 +
113569
8503056

u

Finding a point (u,z) on this curve, where u is a square, ensures
that u2 + 175

1458 u+ 113569
8503056 is a square and that we can write u = v2.

With this we have a solution to y2 = v4 + 175
1458 v2 + 113569

8503056 .

Using this v as parameter for E ′(v2− 1
16 , 0) we know that the

curve has a point with x-coordinate v2 + 175
1296 and this point is

a non-torsion point. Hence, rank of E ′ > 0.

The curve Egen has infinitely many points and thus there are
infinitely many parameters v to generate a curve with torsion
Z/2×Z/4 and rank at least 1.



Thank you for your attention!


	Motivation

