Elliptic Curves over \mathbb{Q}

Peter Birkner

Technische Universiteit Eindhoven

DIAMANT Summer School on Elliptic and Hyperelliptic Curve Cryptography

16 September 2008

What is an elliptic curve? (1)

An elliptic curve E over a field k in Weierstraß form can be given by the equation:

$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6} .
$$

- The coefficients $a_{1}, a_{2}, a_{3}, a_{4}, a_{6}$ are in k.
- We need that the partial derivatives

$$
2 y+a_{1} x+a_{3} \text { and } 3 x^{2}+2 a_{2} x+a_{4}-a_{1} y
$$

do not vanish simultaneously for each point (x, y) over \bar{k}. This is to avoid singularities on the curve.

What is an elliptic curve? (2)

If $\operatorname{char}(k) \neq 2,3$ we can always transform to short Weierstraß form:

$$
E: y^{2}=x^{3}+a x+b \quad(a, b \in k)
$$

- If the discriminant $\Delta=-16\left(4 a^{3}+27 b^{2}\right)$ of E is $\neq 0$, then the equation describes an elliptic curve without singular points.
- From now on $k=\mathbb{Q}$ and short Weierstraß form!
- The set of all points on E together with the point at infinity P_{∞} forms an additive group. P_{∞} is the neutral element in this group.

Example: elliptic curves (over the reals)

$E_{1}: y^{2}=x^{3}-x, \Delta \neq 0$

$E_{2}: y^{2}=x^{3}-3 x+3, \Delta \neq 0$

Example: non-elliptic curves (over the reals)

$E_{3}: y^{2}=x^{3}+x^{2}, \Delta=0$
"Node"

$E_{4}: y^{2}=x^{3}, \Delta=0$
"Cusp"

Group law for $y^{2}=x^{3}+a x+b, \operatorname{char}(k) \neq 2,3$

The set of points on an elliptic curve together with P_{∞} forms an additive group (E, \oplus).

- The neutral element in this group is P_{∞}.
- The negative of a point $P=(x, y)$ is $-P=(x,-y)$.
- For two points $P=\left(x_{1}, y_{1}\right), Q=\left(x_{2}, y_{2}\right)$ with $P \neq \pm Q$ we have $P \oplus Q=\left(x_{3}, y_{3}\right)$, where

$$
x_{3}=\left(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right)^{2}-x_{1}-x_{2}, \quad y_{3}=\left(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right)\left(x_{1}-x_{3}\right)-y_{1}
$$

- For $P \neq \pm P$ we have $[2] P=\left(x_{3}, y_{3}\right)$, where

$$
x_{3}=\left(\frac{3 x_{1}^{2}+a}{2 y_{1}}\right)^{2}-2 x_{1}, \quad y_{3}=\left(\frac{3 x_{1}^{2}+a}{2 y_{1}}\right)\left(x_{1}-x_{3}\right)-y_{1}
$$

The graphical addition law

Addition: $P \oplus Q$
Doubling: [2] P

Order and torsion

- The order of a point P is the smallest positive integer n such that $[n] P=\underbrace{P \oplus \ldots \oplus P}_{n \text { times }}=P_{\infty}$.
- If $[n] P$ never adds up to P_{∞}, then the order of P is ∞.
- The order of the neutral element P_{∞} is 1 .
- The set of all points with finite order is a subgroup of the group of points. It is called the torsion subgroup of E.
- Similarly, the group of points with order ∞, together with P_{∞} is called the non-torsion subgroup of E.

Example (part 1)

$$
E: y^{2}=x^{3}-\frac{1}{36} x^{2}-\frac{5}{36} x+\frac{25}{1296} \text { over } \mathbb{Q}
$$

Points of order 4
$\left(0,-\frac{5}{36}\right)$
($0, \frac{5}{36}$)
$\left(\frac{5}{9},-\frac{35}{108}\right)$
$\left(\frac{5}{9}, \frac{35}{108}\right)$
There are no more points (over \mathbb{Q}) of finite order!
Together with P_{∞} these points are all possible torsion points. The torsion subgroup of E is isomorphic to $\mathbb{Z} / 2 \times \mathbb{Z} / 4$.

The point $P=\left(\frac{77}{162}, \frac{170}{729}\right)$ is a non-torsion point on E.

Example (part 2)

$$
E: y^{2}=x^{3}-\frac{1}{36} x^{2}-\frac{5}{36} x+\frac{25}{1296} \text { over } \mathbb{Q}
$$

The point $P=\left(\frac{77}{162}, \frac{170}{729}\right)$ has order ∞ and is thus a non-torsion point on the curve E.

The subgroup $\langle P\rangle$ generated by P is isomorphic to \mathbb{Z} via the mapping $\mathbb{Z} \rightarrow E(\mathbb{Q}), n \mapsto[n] P$.

Hence the group structure of E is $\mathbb{Z} / 2 \times \mathbb{Z} / 4 \times \mathbb{Z}^{r}$, where $r>0$.
The number r is called rank of the elliptic curve.
There could be another point of order ∞ which is not a multiple of P. In this case the rank would be 2 or higher.

Which torsion groups are possible?

Theorem of Mazur

Let E / \mathbb{Q} be an elliptic curve. Then the torsion subgroup $E_{\text {tors }}(\mathbb{Q})$ of E is isomorphic to one of the following fifteen groups:

$$
\begin{gathered}
\mathbb{Z} / n \text { for } n=1,2,3,4,5,6,7,8,9,10 \text { or } 12 \\
\mathbb{Z} / 2 \times \mathbb{Z} / 2 n \text { for } n=1,2,3,4
\end{gathered}
$$

For example, there is no elliptic curve over \mathbb{Q} with a point of order 11, 13, 14 etc.

How to find torsion points? (part 1)

Theorem of Lutz-Nagell

Let E over \mathbb{Q} be an elliptic curve with short Weierstraß equation

$$
y^{2}=x^{3}+a x+b \quad(a, b \in \mathbb{Z})
$$

Then for all non-zero torsion points P we have:
(1) The coordinates of P are in \mathbb{Z}, i.e. $\mathrm{x}(P), \mathrm{y}(P) \in \mathbb{Z}$
(2) If the order of P is greater than 2 (i.e. $\mathrm{y}(P) \neq 0$), then $\mathrm{y}(P)^{2}$ divides $4 a^{3}+27 b^{2}$.

How to find torsion points? (part 2)

Example

Let $p \in \mathbb{Z}$ be a prime and let $E: y^{2}=x^{3}+p^{2}$ be an elliptic curve over \mathbb{Q}. Since $x^{3}+p^{2}=0$ has no solutions in \mathbb{Q}, there is no 2-torsion.

- Now, $4 a^{3}+27 b^{2}=27 p^{4}$.
- Let (x, y) be a torsion point. Then we know that $x, y \in \mathbb{Z}$ and $y^{2} \mid 27 p^{4}$, thus $y \in\left\{ \pm 1, \pm 3, \pm p, \pm p^{2}, \pm 3 p, \pm 3 p^{2}\right\}$.
- It is clear that $(0, \pm p) \in E$, and they can be checked to be points of order 3.

Reduction modulo p (part 1)

- Let E be an elliptic curve over \mathbb{Q} given by the equation $E: y^{2}=x^{3}+a x+b \quad(a, b \in \mathbb{Z})$.
- Let p be a prime. Then we can consider the curve equation "modulo p ", i.e. we take a and b modulo p.
- The new equation $E^{\prime}: y^{2}=x^{3}+a^{\prime} x+b^{\prime}$ describes an elliptic curve if $\operatorname{disc}\left(E^{\prime}\right) \neq 0$, i.e. not a multiple of p.

Definition

We say that E has good reduction at p if the discriminant of E is not a multiple of p, otherwise E has bad reduction at p.

Reduction modulo p (part 2)

Example

Let E over \mathbb{Q} be given by $y^{2}=x^{3}+3$. The discriminant of this curve is $\Delta=-3888=-2^{4} 3^{5}$.

Thus the only primes of bad reduction are 2 and 3 , and E modulo p is non-singular for all $p \geq 5$.

Let $p=5$ and consider the reduction E^{\prime} of E modulo 5 . Then we have

$$
E(\mathbb{Z} / 5)=\left\{P_{\infty},(1,2),(1,3),(2,1),(2,4),(3,0)\right\}
$$

Reduction modulo p (part 3)

Proposition

Let E over \mathbb{Q} be an elliptic curve and let m be a positive integer and p a prime number such that $\operatorname{gcd}(p, m)=1$. For E modulo p the reduction map modulo p

$$
E(\mathbb{Q})[m] \rightarrow E^{\prime}(\mathbb{Z} / p)
$$

is injective.

Corollary

The number of m-torsion points of E over \mathbb{Q} divides the number of points over \mathbb{Z} / p.

Reduction modulo p (part 4)

Example $E: y^{2}=x^{3}+3$ over \mathbb{Q}

- Reduction modulo 5 gives
$E(\mathbb{Z} / 5)=\left\{P_{\infty},(1,2),(1,3),(2,1),(2,4),(3,0)\right\}$, i.e. the reduced curve has 6 points.
- Reducing the curve modulo 7 gives 13 points.
- Now let's assume $q \neq 5,7$ be prime.
- Proposition $\Rightarrow \# E(\mathbb{Q})[q]$ divides 6 and $13 \Rightarrow \# E(\mathbb{Q})[q]=1$.

Reduction modulo p (part 5)

Example $E: y^{2}=x^{3}+3$ over \mathbb{Q}

- $q=5$: Prop. $\Rightarrow \# E(\mathbb{Q})[5]$ divides 13 , i.e. $5 \mid 13$ if $\# E(\mathbb{Q})[5]$ is non-trivial. Hence $\# E(\mathbb{Q})[5]=1$.
- Same argument for $q=7: \# E(\mathbb{Q})[7]=1$.
- Outcome: $E(\mathbb{Q})$ has trivial torsion subgroup $\left\{P_{\infty}\right\}$.

But $(1,2)$ is a point on the curve, so it must be a point with infinite order, and the rank is at least 1.

Rank records for elliptic curves over \mathbb{Q}

T	$B(T)>=$	Author(s)
0	$\underline{28}$	Elkies (2006)
z/2z	18	Elkies (2006)
z/3z	13	Eroshkin (2007,2008)
z/4z	$\underline{12}$	Elkies (2006)
z/5z	$\underline{6}$	Dujella - Lecacheux (2001)
z/6z	8	Eroshkin (2008), Dujella - Eroshkin (2008), Elkies (2008), Dujella (2008)
z/7z	$\underline{5}$	Dujella - Kulesz (2001), Elkies (2006)
z/8Z	$\underline{6}$	Elkies (2006)
z/9z	$\underline{3}$	Dujella (2001), MacLeod (2004), Eroshkin (2006), Eroshkin - Dujella (2007)
z/10z	$\underline{4}$	Dujella (2005), Elkies (2006)
z/12z	3	Dujella (2001, 2005,2006), Rathbun (2003,2006)
$\mathrm{z} / 2 \mathrm{z} \times \mathrm{z} / 2 \mathrm{z}$	14	Elkies (2005)
$\mathrm{z} / 2 \mathrm{Z} \times \mathrm{z} / 4 \mathrm{Z}$	8	Elkies (2005), Eroshkin (2008), Dujella - Eroshkin (2008)
$\mathrm{z} / 2 \mathrm{z} \times \mathrm{z} / 6 \mathrm{z}$	$\underline{6}$	Elkies (2006)
$\mathrm{z} / 2 \mathrm{z} \times \mathrm{z} / 8 \mathrm{z}$	3	Connell (2000), Dujella (2000,2001,2006), Campbell - Goins (2003), Rathbun $(2003,2006)$ Flores - Jones - Rollick - Weigandt (2007)

http://web.math.hr/~duje/tors/tors.html

How to construct elliptic curves with prescribed torsion subgroup?

Table 3. Parametrization of torsion structures

```
1. 0: \mp@subsup{y}{}{2}=\mp@subsup{x}{}{3}+a\mp@subsup{x}{}{2}+bx+c;\mp@subsup{\Delta}{1}{}(a,b,c)\not=0,
    \Delta 
2. Z/2Z: y = x(x (x+ax+b);,\mp@subsup{\Delta}{1}{2}(a,b)\not=0,\mp@subsup{\Delta}{1}{}(a,b)=\mp@subsup{a}{}{2}\mp@subsup{b}{}{2}-4\mp@subsup{b}{}{3}.
3. Z/2Z }\timesZ/2Z: \mp@subsup{y}{}{2}=x(x+r)(x+s),r\not=0\not=s\not=r
```



```
(The form \(E(b, c)\) is used in all parametrizations below where in \(E(b, c)\) \(y^{2}+(1-c) x y-b y=x^{3}-b x^{2},(0,0)\) is a torsion point of maximal order, \(\Delta(b, c)=\alpha^{4} b^{3}-8 \alpha^{2} b^{4}-\alpha^{3} b^{3}+36 \alpha b^{4}+16 b^{5}-27 b^{4}\), and \(\alpha=1-c\).)
5. \(Z / 4 Z: E(b, c), c=0, \Delta(b, c)=b^{4}(1+16 b) \neq 0\).
6. \(Z / 4 Z \times Z / 2 Z: E(b, c), b=v^{2}-\frac{1}{16}, v \neq 0, \pm \frac{1}{4}, c=0\).
7. \(Z / 8 Z \times Z / 2 Z: E(b, c), b=(2 d-1)(d-1), c=(2 d-1)(d-1) / d\), \(d=\alpha(8 \alpha+2) /\left(8 \alpha^{2}-1\right), d(d-1)(2 d-1)\left(8 d^{2}-8 d+1\right) \neq 0\).
8. \(Z / 8 Z: E(b, c), b=(2 d-1)(d-1), c=(2 d-1)(d-1) / d, \Delta(b, c) \neq 0\).
9. \(Z / 6 Z: E(b, c), b=c+c^{2}, \Delta(b, c)=c^{6}(c+1)^{3}(9 c+1) \neq 0\).
10. \(Z / 6 Z \times Z / 2 Z: E(b, c), b=c+c^{2}, c=(10-2 \alpha) /\left(\alpha^{2}-9\right)\), \(\Delta(b, c)=c^{6}(c+1)^{3}(9 c+1) \neq 0\).
11. \(Z / 12 Z: E(b, c), b=c d, c=f d-f, d=m+\tau, f=m /(1-\tau)\), \(m=\left(3 \tau-3 \tau^{2}-1\right) /(\tau-1), \Delta(b, c) \neq 0\).
12. \(Z / 9 Z: E(b, c), b=c d, c=f d-f, d=f(f-1)+1, \Delta(b, c) \neq 0\).
13. \(Z / 5 Z: E(b, c), b=c, \Delta(b, c)=b^{5}\left(b^{2}-11 b-1\right) \neq 0\).
14. \(Z / 10 Z: E(b, c), b=c d, c=f d-f, d=f^{2} /\left(f-(f-1)^{2}\right), f \neq(f-1)^{2}, \Delta(b, c) \neq 0\).
15. \(Z / 7 Z: E(b, c), b=d^{3}-d^{2}, c=d^{2}-d, \Delta(b, c)=d^{7}(d-1)^{7}\left(d^{3}-8 d^{2}+5 d+1\right) \neq 0\).
```


Construction of an elliptic curve with torsion $\mathbb{Z} / 2 \times \mathbb{Z} / 4$ and rank >0

- Kubert's curve $E(b, c): Y^{2}+(1-c) X Y-b Y=X^{3}-b X^{2}$
- Apply transformation $y=Y+\frac{(1-c) X-b}{2}$ and $x=X$ to get the form

$$
E^{\prime}(b, c): y^{2}=x^{3}+\frac{(c-1)^{2}-4 b}{4} x^{2}+\frac{b(c-1)}{2} x+\frac{b^{2}}{4}
$$

- For $\mathbb{Z} / 2 \times \mathbb{Z} / 4$ use $c=0$ and $b=v^{2}-\frac{1}{16}, v \neq 0, \pm \frac{1}{4}$ (see entry \#6 of the previous slide)
- The curve $E^{\prime}\left(v^{2}-\frac{1}{16}, 0\right)$ has torsion subgroup $\mathbb{Z} / 2 \times \mathbb{Z} / 4$

How to get rank >0 ?

Points of order 4

$$
\begin{aligned}
& \left(0,-\frac{1}{2} v^{2}+\frac{1}{32}\right) \\
& \left(0, \frac{1}{2} v^{2}-\frac{1}{32}\right) \\
& \left(2 v^{2}-\frac{1}{8},-\frac{1}{8} v\left(16 v^{2}-1\right)\right) \\
& \left(2 v^{2}-\frac{1}{8}, \frac{1}{8} v\left(16 v^{2}-1\right)\right)
\end{aligned}
$$

Points of order 2

$$
\begin{aligned}
& \left(v^{2}-\frac{1}{16}, 0\right) \\
& \left(-\frac{1}{8}+\frac{1}{2} v, 0\right) \\
& \left(-\frac{1}{8}-\frac{1}{2} v, 0\right)
\end{aligned}
$$

Try to find a point on the curve with x-coordinate different from the x-coordinate of all torsion points, for instance $x_{0}=v^{2}+\frac{175}{1296}$.

How to get rank >0 ?

Plug in x_{0} into curve equation $E^{\prime}\left(v^{2}-\frac{1}{16}, 0\right)$ and make monic:

$$
y^{2}=v^{4}+\frac{175}{1458} v^{2}+\frac{113569}{8503056}
$$

To find solutions to this, we replace $u=v^{2}$ on the right-hand side and get

$$
u^{2}+\frac{175}{1458} u+\frac{113569}{8503056} .
$$

Now, we require that u and $u^{2}+\frac{175}{1458} u+\frac{113569}{8503056}$ are squares in \mathbb{Q}.
This leads to the elliptic curve

$$
E_{\text {gen }}: z^{2}=u\left(u^{2}+\frac{175}{1458} u+\frac{113569}{8503056}\right)
$$

How to get rank >0 ?

$$
E_{\text {gen }}: z^{2}=u^{3}+\frac{175}{1458} u^{2}+\frac{113569}{8503056} u
$$

Finding a point (u, z) on this curve, where u is a square, ensures that $u^{2}+\frac{175}{1458} u+\frac{113569}{8503056}$ is a square and that we can write $u=v^{2}$.

With this we have a solution to $y^{2}=v^{4}+\frac{175}{1458} v^{2}+\frac{113569}{8503056}$.
Using this v as parameter for $E^{\prime}\left(v^{2}-\frac{1}{16}, 0\right)$ we know that the curve has a point with x-coordinate $v^{2}+\frac{175}{1296}$ and this point is a non-torsion point. Hence, rank of $E^{\prime}>0$.

The curve $E_{g e n}$ has infinitely many points and thus there are infinitely many parameters v to generate a curve with torsion $\mathbb{Z} / 2 \times \mathbb{Z} / 4$ and rank at least 1 .

Thank you for your attention!

