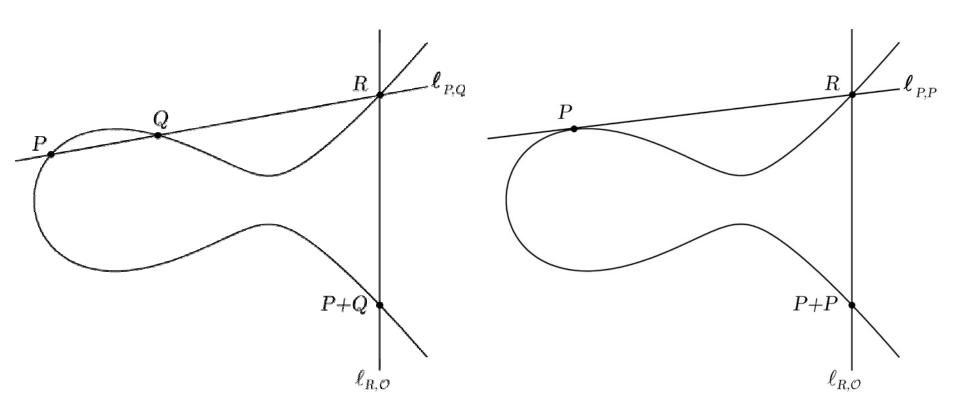


The Picard Group, or how to build a group from a set

Isabelle Déchène Assistant Professor Department of Mathematics and Statistics University of Ottawa, Canada

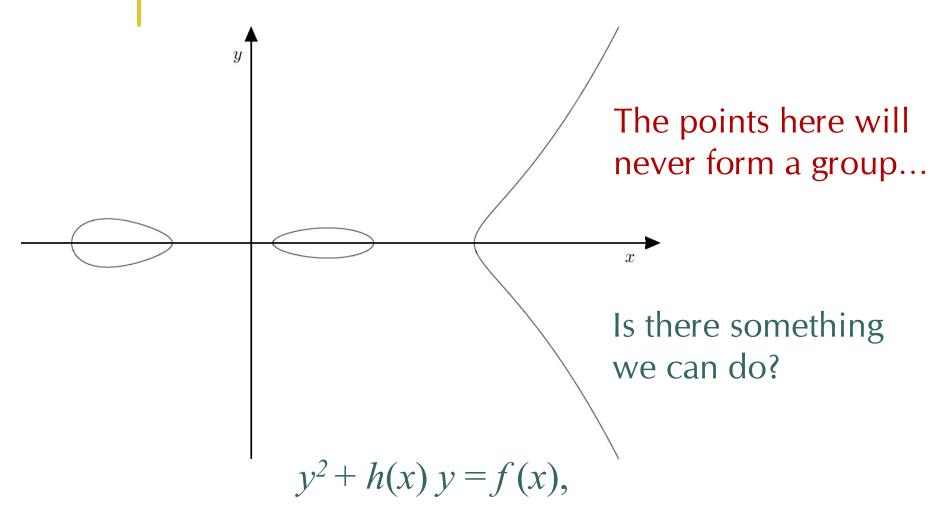
Tutorial on Elliptic and Hyperelliptic Curve Cryptography University College Dublin, Ireland September 3rd, 2007

Chord-and-tangent Rule on Elliptic Curves



$$y^2 = x^3 + ax + b$$

Motivation: Hyperelliptic Curves



plus some extra conditions on f and h that we'll see later on.

The Stamp Collector

A stamp collector takes his passion quite seriously. Each collectible has a unique identification code.

The Stamp Collector

It is then an easy matter to write in a compact form an up to date inventory of his collection.

Date	Operation	D	F	G	R	• • •
Sept. 1st	Inventory	4	0	5	1	• • •
Sept. 3 rd	Transaction	0	0	-2	1	• • •
Sept. 3 rd	Inventory	4	0	3	2	• • •

For quick reference, this last state could also be symbolized by the shorthand

$$4(D) + 3(G) + 2(R) + \dots$$

The Stamp Collector

So we started with a *set* consisting of the different stamps and we ended up with a *group* where a typical element consists of a list of integers, one for each stamp.

This idea is often used in mathematics.

Indeed, we just built a *free abelian group* on a set of stamps!

The identity element in this group is:

$$0 = 0(D) + 0(F) + 0(G) + 0(R) + \dots$$

• • Divisors

Let *C* be your favorite smooth algebraic curve defined over a field *K*.

We now collect the points of $C(\overline{K})$ as a hobby:

$$3(P_1) - 5(P_2) + 0(P_3) - 9(P_4) + \dots$$

$$+ 0(P_1) - 3(P_2) - 1(P_3) + 3(P_4) + \dots$$

$$3(P_1) - 8(P_2) - 1(P_3) - 6(P_4) + \dots$$

Each of these formal sums is called a *divisor*.

• • Divisors

A *divisor* on *C* is hence a formal sum of the form

$$D = \sum_{P \in C} n_P(P),$$

where each n_P is an integer and finitely many of them are nonzero.

The addition of two such divisors is thus given by

$$\sum_{P \in C} n_P(P) + \sum_{P \in C} m_P(P) = \sum_{P \in C} (n_P + m_P)(P).$$

• • Divisors

The group formed by these divisors is denoted Div(C), and its identity element is

$$\mathbf{0} = \sum_{P \in C} 0(P)$$

The *degree* of the divisor *D* is the integer

$$\deg(D) = \sum_{P \in C} n_P$$

The divisors of degree zero form a subgroup of Div(C) denoted by $Div^0(C)$.

Divisors defined over K

Let $Gal(\overline{K}/K)$ be the Galois group of \overline{K} over K and let $D = \sum_{P \in C} n_P(P)$ be a divisor.

Definitions. For $\sigma \in \operatorname{Gal}(\overline{K}/K)$, let

$$D^{\sigma} = \sum_{P \in C} n_P(P^{\sigma}).$$

Moreover, D is said to be defined over K if

$$D^{\sigma} = D$$
 for all $\sigma \in \operatorname{Gal}(\overline{K}/K)$.

• • Principal Divisors

The divisor of a function $f \in \overline{K}(C)^*$ is

$$\operatorname{div}(f) = \sum_{P \in C} \operatorname{ord}_{P}(f)(P),$$

where $\operatorname{ord}_{P}(f)$ is the *order of vanishing* at P.

- If $\operatorname{ord}_P(f) < 0$, then f has a pole of order $-\operatorname{ord}_P(f)$ at P,
- If $\operatorname{ord}_{P}(f) = 0$, then f is defined and nonzero at P,
- If $\operatorname{ord}_P(f) > 0$, then f has a zero of order $\operatorname{ord}_P(f)$ at P.

These special divisors are called *principal divisors*.

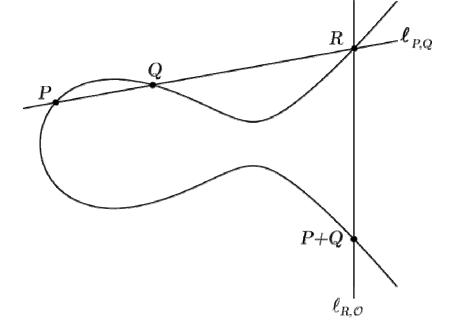
Properties of Principal Divisors

Theorem. Let C be a smooth algebraic curve defined over K and $f, g \in \overline{K}(C)^*$ be given. Then,

- $\operatorname{div}(f) = \mathbf{0}$ iff $f \in \overline{K}^*$
- deg(div(f)) = 0
- $\operatorname{div}(f \cdot g) = \operatorname{div}(f) + \operatorname{div}(g)$
- $\operatorname{div}(f/g) = \operatorname{div}(f) \operatorname{div}(g)$
- $\operatorname{div}(f^n) = n \cdot \operatorname{div}(f)$ for all integers $n \ge 1$.
- $\operatorname{div}(f) = \operatorname{div}(g)$ iff $f = c \cdot g$ for some $c \in \overline{K}^*$.

Important Examples

$$\operatorname{div}\left(\frac{\ell_{P+Q,\mathcal{O}}}{Z}\right) = (R) + (P+Q) - 2(\mathcal{O})$$



$$\operatorname{div}\left(\frac{\ell_{P,Q}}{\ell_{P+Q,\mathcal{O}}}\right) = \operatorname{div}\left(\frac{\ell_{P,Q}}{Z}\right) - \operatorname{div}\left(\frac{\ell_{P+Q,\mathcal{O}}}{Z}\right) = (P) + (Q) - (P+Q) - (\mathcal{O})$$

This observation is at the heart of pairing computations!

Constructing the Picard Group

- √ 1. Start with your favorite algebraic curve.
- ✓ 2. Consider its divisors of degree zero.
 - 3. (Cleverly) define an equivalence relation on them.
 - 4. Find a canonical representative for each class.

• • Linear Equivalence

Now let $D_1, D_2 \in \text{Div}(C)$ be given.

If $D_1 - D_2$ is a principal divisor, then we say that D_1 and D_2 are *linearly equivalent*, and we write

$$D_1 \sim D_2$$
.

The whole idea behind this equivalence relation is to somehow measure how much D_1 differs from D_2 .

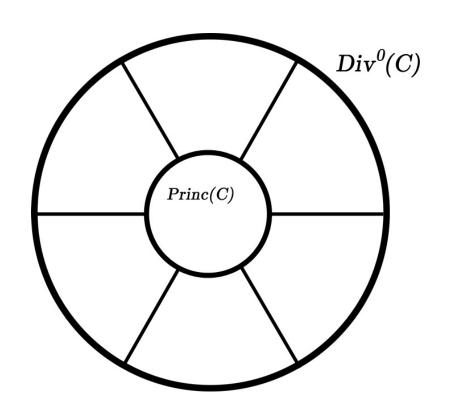
The Picard Group

Equivalence classes of divisors of degree zero form a group denoted $Pic^0(C)$.

In other words,

 $\operatorname{Pic}^{0}(C) = \operatorname{Div}^{0}(C) / \operatorname{Princ}(C),$

where Princ(*C*) denotes the subgroup of principal divisors.



Lastly, $\operatorname{Pic}_K^0(C)$ is the subgroup of $\operatorname{Pic}^0(C)$ fixed by $\operatorname{Gal}(K/K)$.

Constructing the Picard Group

- √ 1. Start with your favorite algebraic curve.
- ✓ 2. Consider its divisors of degree zero.
- √ 3. (Cleverly) define an equivalence relation on them.
 - 4. Find a canonical representative for each class.

Canonical Representatives for Elliptic Curves

Let E be an elliptic curve defined over a field K. We first want to associate a divisor to each point of E.

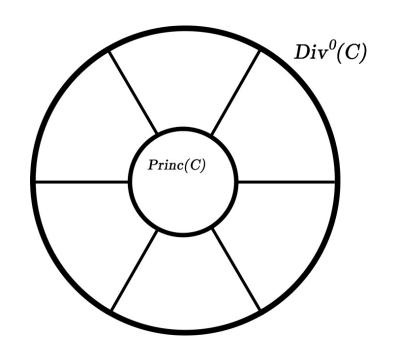
$$E \qquad \longrightarrow \qquad \text{Div}^{0}(E)$$

$$P \qquad \qquad (P) - (\mathcal{O})$$

$$\mathbf{0} = (\mathcal{O}) - (\mathcal{O})$$

$$E \qquad \Rightarrow \qquad \operatorname{Pic}^{0}(E)$$

$$P \qquad \qquad [(P) - (\mathcal{O})]$$



• • The Abel-Jacobi Theorem

Theorem. Let E be an elliptic curve defined over a field K and let $D = \sum_{P \in E} n_P(P) \in \text{Div}(E)$ be given. Then,

D is principal

if and only if

deg(D) = 0 and $\sum_{P \in E} n_P P = \mathcal{O}$.

Important Tool

Corollary. Let *E* be an elliptic curve defined over a field *K* and let

$$D_1 = \sum_{P \in E} n_P(P), D_2 = \sum_{P \in E} m_P(P) \in \mathrm{Div}(E)$$
 be given. Then,

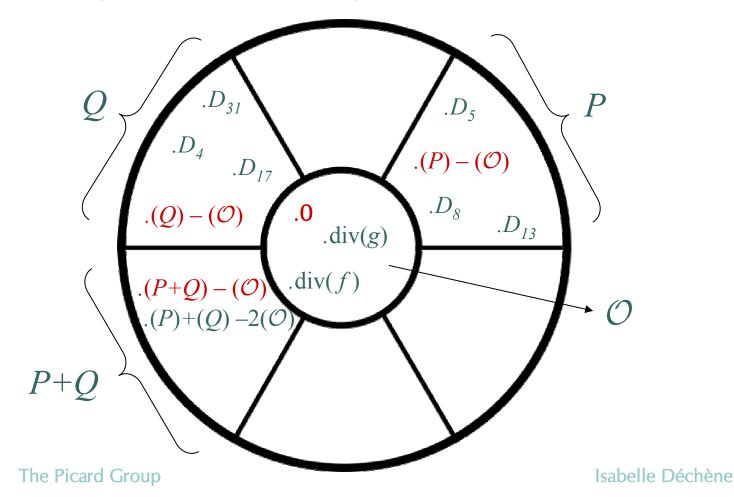
$$D_1 \sim D_2$$

if and only if

$$deg(D_1) = deg(D_2)$$
 and $\sum_{P \in E} n_P P = \sum_{P \in E} m_P P$.

In other words...

For an elliptic curve E, the picture looks like this:



The Jacobian of an Elliptic Curve

Theorem. Let *E* be an elliptic curve defined over a field *K*.

Then the map $E \rightarrow$

$$E \to \operatorname{Pic}^0(E)$$

$$P \mapsto \left[(P) - (\mathcal{O}) \right]$$

is a group isomorphism with well-defined inverse

$$\operatorname{Pic}^{0}(E) \to E$$

$$\left[\sum_{P\in E}n_P(P)\right]\mapsto \sum_{P\in E}n_PP.$$

• • The Jacobian Variety

Theorem. Let C be a smooth algebraic curve of genus g defined over an algebraically closed field.

Then there exists an abelian variety J(C) of dimension g which is isomorphic (as a group) to $Pic^0(C)$.

Definition. The variety J(C) is called the *Jacobian* of C.

We just saw that the Jacobian of an elliptic curve is itself!

What about the Jacobian of a hyperelliptic curve???

Hyperelliptic Curves

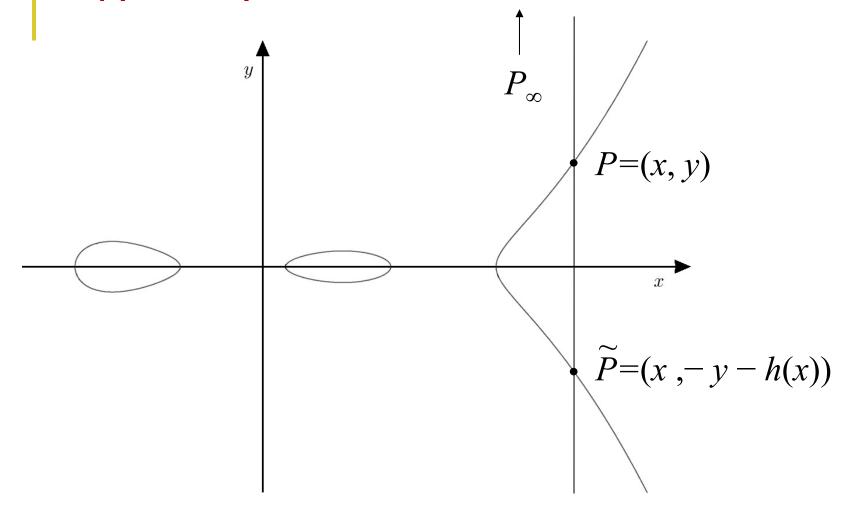
Definition. A *hyperelliptic curve* of genus *g* over a field *K* is a smooth algebraic curve *C* given by an equation of the form

$$y^2 + h(x) y = f(x),$$

where $h, f \in K[x]$, $\deg(f) = 2g + 1$, $\deg(h) \le g$, and f is a monic polynomial.

To ensure that C is smooth, it suffices to verify that the partial derivatives 2y + h and f' - h'y do not simultaneously vanish at any point of $C(\overline{K})$.

Hyperelliptic Curve



Is there a way to see the group law on the Jacobian here?

Constructing the Picard Group of a Hyperelliptic Curve

- \checkmark 1. Start with your favorite hyperelliptic curve C.
- \checkmark 2. Consider its divisors of degree zero Div⁰(C).
- ✓ 3. Linear equivalence will yield $Pic^0(C)$.
 - 4. Find a canonical representative for each class.

Reduced Divisors

Theorem. Let *C* be a hyperelliptic curve of genus *g* over *K*. Then each divisor class can be *uniquely* represented by a divisor of the form

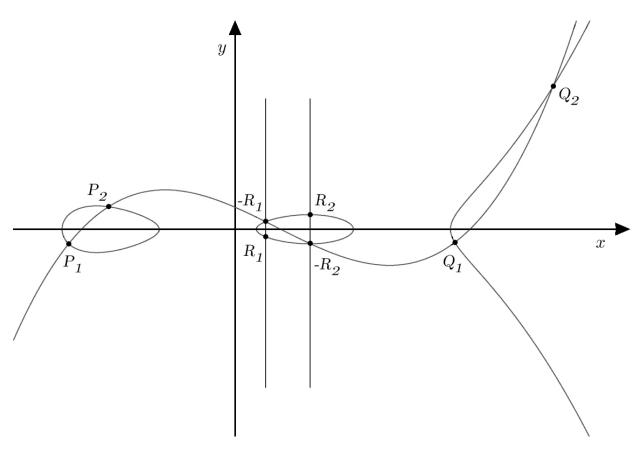
$$D = \sum_{i=1}^{r} (P_i) - r(P_{\infty}),$$

where $r \leq g$, each $P_i \neq P_{\infty}$, and $P_i \neq \widetilde{P}_j$ as soon as $i \neq j$.

Note. We do not require the P_i 's to be distinct.

Definition. Such a divisor *D* is said to be *reduced*.

Group Law on the Jacobian of a Hyperelliptic Curve of Genus 2



$$(P_1) + (P_2) - 2(\mathcal{O}) + (Q_1) + (Q_2) - 2(\mathcal{O}) = (R_1) + (R_2) - 2(\mathcal{O}).$$

Mumford Representation

Theorem. Let C be a hyperelliptic curve of genus g over K. Then each nontrivial divisor class over K can be represented by a *unique* pair of polynomials $u, v \in K[x]$ satisfying:

- *u* is monic
- deg(v) < deg(u) ≤ g
 u | (v² + vh f)

• • Great News!

You are now ready for the talks of tomorrow morning!

✓ Pairing background

✓ Fast arithmetic on ECC and HECC Peter Birkner

✓ Pairing implementation

Tanja Lange

Mike Scott

Good Luck!