Motivation Left-To-Right Binary Right-To-Left Binary Signed Digit Representations Windowing Methods

Scalar Multiplication and Addition Chains

Peter Birkner

Department of Mathematics, Technical University of Denmark

Summer School on Elliptic and Hyperelliptic Curve Cryptography, Toronto 2006

Motivation Left-To-Right Binary Right-To-Left Binary Signed Digit Representations Windowing Methods

Outline

- Motivation
- 2 Left-To-Right Binary
- Right-To-Left Binary
- Signed Digit Representations
- Windowing Methods

Motivation

Given: A group (G, \oplus) , an element $P \in G$ and a scalar $n \in \mathbb{Z}$

Task: Compute [n]P efficiently

- In Elliptic curve cryptosystems G is group of points on the curve.
- Scalar multiplication is the most important operation in these DL-based cryptosystems!
- First naive method: $[n]P = P \oplus P \oplus \cdots \oplus P$ (*n*-times)
- If $n = 2^k$, then compute [n]P using k doublings $[2]P, [4]P, [8]P, \dots, [2^k]P$

Better: Left-To-Right Binary (1)

Algorithm 1 (Left-to-right binary)

IN: An element $P \in G$ and a positive integer

$$n = (n_{l-1} \dots n_0), n_{l-1} = 1.$$

- R ← P
- 2 for i = l 2 to 0 do
 - R ← [2]R
 - 2 if $n_i = 1$ then $R \leftarrow R \oplus P$
 - $i \leftarrow i 1$

Left-To-Right Binary (2)

The algorithm uses the following rule:

$$[(n_{l-1} \dots n_i)_2]P = [2]([(n_{l-1} \dots n_{i+1})_2]P) \oplus [n_i]P$$

Example:
$$45 = (101101)_2$$

$$P$$

$$2P$$

$$2(2P) \oplus P$$

$$2(2(2P) \oplus P) \oplus P$$

$$2(2(2(2P) \oplus P) \oplus P)$$

$$2(2(2(2(2P) \oplus P) \oplus P)) \oplus P = [45]P$$

Algorithm is aka Double-and-Add

Right-To-Left Binary

Algorithm 2 (Right-to-Left binary)

IN: An element $P \in G$ and a positive integer

$$n = (n_{l-1} \dots n_0), n_{l-1} = 1.$$

② while
$$i \leq l-1$$
 do

1 if
$$n_i = 1$$
 then $R \leftarrow R \oplus S$

$$i \leftarrow i + 1$$

Motivation Left-To-Right Binary **Right-To-Left Binary** Signed Digit Representations Windowing Methods

Remarks

- Right-to-left binary needs I 1 doublings and w(n) additions
- w(n) denotes the Hamming weight of n. That is the number of nonzero digits in the binary representation of n
- On average the density is 1/2.

Non-Adjacent-Form (NAF) (1)

- On an EC addition and subtraction can be computed with the same effort
- Hence, use signed digits!
- $n = \sum_{i=0}^{l-1} n_i 2^i$ with $n_i \in \{0, \pm 1\}$
- No two consecutive digits are nonzero in NAF
- NAF is unique and has minimal density of all signed digit representations
- The average density is 1/3
- Note: The length can increase by 1

Non-Adjacent-Form (NAF) (2)

Algorithm 3 (Signed-binary representation in NAF)

IN: A positive integer $n = (n_l n_{l-1} \dots n_0)_2$ with $n_l = n_{l-1} = 0$. OUT: The signed-binary representation of n in NAF

$$(n'_{l-1}\ldots n'_0)_s.$$

$$\mathbf{0}$$
 $c_0 \leftarrow 0$

2 for
$$i = 0$$
 to $\ell - 1$ do

2
$$n_i' \leftarrow c_i + n_i - 2c_{i+1}$$

$$\circ$$
 return $(n'_{\ell-1} \dots n'_0)_s$

Non-Adjacent-Form (NAF) (3)

Example. We want to compute the NAF of $15 = (1111)_2$

i	Ci	C _{i+1}	n _i	n_{i+1}	n'_i
0	0	1	1	1	-1
1	1	1	1	1	0
2	1	1	1	1	0
3	1	1	1	0	0
4	1	0	0		1

The NAF of 15 is $(1,0,0,0,-1)_{NAF}$ with density 2/5

15 = (1,0,-1,1,1). Signed digit represent. is **not unique!**

Non-Adjacent-Form (NAF) (4)

Algorithm 4 (Left-to-right NAF)

IN: An element $P \in G$ and a positive integer

$$n = (n_{l-1} \dots n_0), n_{l-1} = 1.$$

2 for
$$i = l - 2$$
 to 0 do

$$\mathbf{0} R \leftarrow [2]R$$

2 if
$$n_i = 1$$
 then $R \leftarrow R \oplus P$

③ if
$$n_i = -1$$
 then $R \leftarrow R \oplus (-P)$

$$0 i \leftarrow i-1$$

The 2^k -ary Method (1)

- Use a larger basis to get sparse representations of n
- A common choice is 2^k as basis
- $S = \{0, 1, ..., 2^k 1\}$ are the digits
- To perform scalar multiplication, first precompute [s]P for all s ∈ S and use a modified version of Algorithm 1

Example
$$k = 3$$
, $S = \{0, 1, 2, 3, 4, 5, 6, 7\}$

$$n = 241 = (11|110|001)_2 = (361)_{2^3}$$

The 2^k -ary Method (2)

Algorithm 5 (Left–to–right 2^k -ary)

IN: An element $P \in G$ and a positive integer n in 2^k -ary representation $n = (n_{l-1} \dots n_0)_{2^k}$ Precomputed values $P, [2]P, \dots, [2^k - 1]P$

2 for
$$i = I - 2$$
 to 0 do

2 if
$$n_i \neq 0$$
 then $R \leftarrow R \oplus [n_i]P$

$$i \leftarrow i - 1$$

The 2^k -ary Method (3)

Example
$$k = 3$$
, $S = \{0, 1, 2, 3, 4, 5, 6, 7\}$

$$n = 241 = (361)_{2^3}$$

Precompute the values P, [2]P,...,[7]P

$$R = 3P$$

$$R = 8R = 24P$$

$$R = R \oplus 6P = 30P$$

$$R = 8R = 240P$$

$$R = R \oplus 1P = 241P$$

Sliding Window Methods

- To reduce the number of precomputations sliding window methods can be used!
- Digits are only the odd integers smaller than 2^k and 0
- $S' = \{0, 1, 3, 5, \dots, 2^k 1\}$
- Consecutive zeros are skipped
- Scan from right to left ⇒ block is odd
- Example (k = 3)

$$241 = (\underline{1} \ \underline{111} \ 000 \ \underline{1})_2$$

Sliding window is also possible with signed digits!

Multiexponentiation (1)

- Sometimes one needs to compute more than one scalar multiplication and later add the results
- E.g. in checking a signature
- Use a trick to combine doublings
- **Example.** We want to compute $[27]P_0 \oplus [30]P_1$ $27 = (11011)_2$ $30 = (11110)_2$
- Scan the columns from left to right and double-and-add: P₀ ⊕ P₁

$$[2](P_0 \oplus P_1) \oplus P_0 \oplus P_1 [2]([2](P_0 \oplus P_1) \oplus P_0 \oplus P_1) \oplus P_1 \dots = [27]P_0 \oplus [30]P_1$$

Multiexponentiation (2)

Remarks

- Some doublings and additions can be saved if $P_0 \oplus P_1$ is precomputed
- Density is 3/4
- Using NAF instead of binary reduces density to 5/9 $P_0 \oplus P_1$ and $P_0 \oplus (-P_1)$ have to be precomputed
- With the Joint Sparse Form (JSF) a density of 1/2 can be achieved (see Solinas, 2001)