Binary Edwards Curves

Reza Rezaeian Farashahi

Dept. of Mathematics and Computing Science TU Eindhoven

joint work with:

Dan Bernstein (University of Illinois at Chicago) and Tanja Lai

Tanja Lange (TU Eindhoven)

ECC, Sep 24, 2008

Edwards curves

- Edwards generalized single example $x^2 + y^2 = 1 x^2y^2$ by Euler/Gauss to whole class of curves.
- He showed that— after some field extensions every elliptic curve over a field $\mathbb F$ with $\operatorname{char}(\mathbb F) \neq 2$ is birationally equivalent to one in the form

$$E_c: x^2 + y^2 = c^2(1 + x^2y^2),$$

where $c \in \mathbb{F}$, $c^5 \neq c$.

The simple addition law on this form is given by

$$(x_1, y_1), (x_2, y_2) \mapsto \left(\frac{x_1y_2 + y_1x_2}{c(1 + x_1x_2y_1y_2)}, \frac{y_1y_2 - x_1x_2}{c(1 - x_1x_2y_1y_2)}\right).$$

Bernstein and Lange generalized to the form

$$E_d: x^2 + y^2 = 1 + dx^2 y^2,$$

where $d \neq 0$, $d^4 \neq 1$

● Every elliptic curve with point of order 4 is birationally equivalent to an Edwards curve.

Edwards curves

- Edwards generalized single example $x^2 + y^2 = 1 x^2y^2$ by Euler/Gauss to whole class of curves.
- He showed that— after some field extensions every elliptic curve over a field $\mathbb F$ with $\operatorname{char}(\mathbb F) \neq 2$ is birationally equivalent to one in the form

$$E_c: x^2 + y^2 = c^2(1 + x^2y^2),$$

where $c \in \mathbb{F}$, $c^5 \neq c$.

The simple addition law on this form is given by

$$(x_1, y_1), (x_2, y_2) \mapsto \left(\frac{x_1y_2 + y_1x_2}{c(1 + x_1x_2y_1y_2)}, \frac{y_1y_2 - x_1x_2}{c(1 - x_1x_2y_1y_2)}\right).$$

Bernstein and Lange generalized to the form

$$E_d: x^2 + y^2 = 1 + dx^2y^2,$$

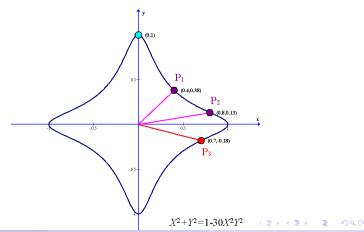
where $d \neq 0$, $d^4 \neq 1$.

• Every elliptic curve with point of order 4 is birationally equivalent to an Edwards curve.

Edwards curves

• The addition law on E_d : $x^2 + y^2 = 1 + dx^2y^2$ is given by

$$(x_1, y_1), (x_2, y_2) \mapsto \left(\frac{x_1y_2 + y_1x_2}{1 + dx_1x_2y_1y_2}, \frac{y_1y_2 - x_1x_2}{1 - dx_1x_2y_1y_2}\right).$$



Properties of Edwards curves

- Neutral element is (0,1); this is an affine point.
- \bullet $-(x_1,y_1)=(-x_1,y_1).$
- \bullet (0,-1) has order 2; (1,0) and (-1,0) have order 4.
- Addition law produces correct result also for doubling.
- Unified group operations!
- Very fast point addition 10M + 1S + 1D. (Even faster with Inverted Edwards coordinates.)
- Dedicated doubling formulas need only 3M + 4S.

Complete addition law

- If d is not a square the denominators $1 + dx_1x_2y_1y_2$ and $1 dx_1x_2y_1y_2$ are never 0; addition law is complete.
- Edwards addition law allows omitting all checks
 - Neutral element is affine point on curve.
 - Addition works to add P and P.
 - Addition works to add P and -P.
 - Addition just works to add P and any Q.
- Only complete addition law in the literature.
- No exceptional points, completely uniform group operations.
- The set of curves with complete addition law is not complete!
- We need Edwards curve in characteristic 2!
- Even characteristic much more interesting for hardware ... and soon also in software, cf. Intel's and Sun's current announcements to include binary instructions.

Complete addition law

- If d is not a square the denominators $1 + dx_1x_2y_1y_2$ and $1 dx_1x_2y_1y_2$ are never 0; addition law is complete.
- Edwards addition law allows omitting all checks
 - Neutral element is affine point on curve.
 - Addition works to add P and P.
 - Addition works to add P and -P.
 - Addition just works to add P and any Q.
- Only complete addition law in the literature.
- No exceptional points, completely uniform group operations.
- The set of curves with complete addition law is not complete!
- We need Edwards curve in characteristic 2!
- Even characteristic much more interesting for hardware ... and soon also in software, cf. Intel's and Sun's current announcements to include binary instructions.

Complete addition law

- If d is not a square the denominators $1 + dx_1x_2y_1y_2$ and $1 dx_1x_2y_1y_2$ are never 0; addition law is complete.
- Edwards addition law allows omitting all checks
 - Neutral element is affine point on curve.
 - Addition works to add P and P.
 - Addition works to add P and -P.
 - Addition just works to add P and any Q.
- Only complete addition law in the literature.
- No exceptional points, completely uniform group operations.
- The set of curves with complete addition law is not complete!
- We need Edwards curve in characteristic 2!
- Even characteristic much more interesting for hardware . . . and soon also in software, cf. Intel's and Sun's current announcements to include binary instructions.

The design of Binary Edwards Curves

How to design a worthy binary partner? Our wish-list after studying and experimenting with mostly small modifications of odd Edwards:

A binary Edwards curve should

- be a binary elliptic curve.
- look like an Edwards curve (in odd characteristic).
- have a complete addition law.
- have easy negation.
- have efficient doubling.
- have efficient additions.
- cover most ordinary binary elliptic curves.

Newton Polygons, in odd characteristic

• Short Weierstrass:
$$y^2 = x^3 + ax + b$$

$$by^2 = x^3 + ax^2 + x$$

$$y^2 = x^4 + 2ax^2 + 1$$

$$x^3 + y^3 + 1 = 3dxy$$

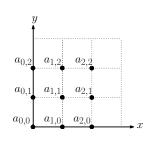
$$x^2 + y^2 = 1 + dx^2y^2$$

Let E_B is defined by F(x,y) = 0.

ullet E_B should look like Edwards curve; so, $\deg_x(F) \leq 2$ and $\deg_y(F) \leq 2$; so,

$$E_B: F(x,y) = \sum_{i=0}^{2} \sum_{j=0}^{2} a_{i,j} x^i y^j = 0.$$

- \mathbf{E}_{B} should have symmetric formulas, so $a_{i,j} = a_{j,i}$.
- E_B should be elliptic, so $a_{2,2} \neq 0$ or $a_{1,2} = a_{2,1} \neq 0$.
- If $a_{2,2} = 0$, and $a_{1,2} = a_{2,1} \neq 0$ then there are three points at infinity. Moreover the addition law can not be complete (for sufficiently large fields).

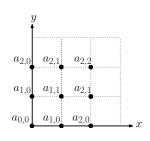


Let E_B is defined by F(x,y) = 0.

ullet E_B should look like Edwards curve; so, $\deg_x(F) \leq 2$ and $\deg_y(F) \leq 2$; so,

$$E_B: F(x,y) = \sum_{i=0}^{2} \sum_{j=0}^{2} a_{i,j} x^i y^j = 0.$$

- ${
 m E_B}$ should have symmetric formulas, so $a_{i,j}=a_{j,i}.$
- E_B should be elliptic, so $a_{2,2} \neq 0$ or $a_{1,2} = a_{2,1} \neq 0$.
- If $a_{2,2} = 0$, and $a_{1,2} = a_{2,1} \neq 0$ then there are three points at infinity. Moreover the addition law can not be complete (for sufficiently large fields).

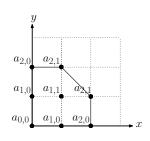


Let E_B is defined by F(x, y) = 0.

• E_B should look like Edwards curve; so, $\deg_x(F) \leq 2$ and $\deg_y(F) \leq 2$; so,

$$E_B: F(x,y) = \sum_{i=0}^{2} \sum_{j=0}^{2} a_{i,j} x^i y^j = 0.$$

- E_B should have symmetric formulas, so $a_{i,j} = a_{j,i}$.
- E_B should be elliptic, so $a_{2,2} \neq 0$ or $a_{1,2} = a_{2,1} \neq 0$.
- If $a_{2,2} = 0$, and $a_{1,2} = a_{2,1} \neq 0$ then there are three points at infinity. Moreover the addition law can not be complete (for sufficiently large fields).

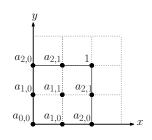


- So, $a_{2,2} = 1$ (scale by $a_{2,2}$).
- The projective model of

$$E_{B}: \sum_{i=0}^{2} \sum_{j=0}^{2} a_{i,j} x^{i} y^{j} = 0$$

is defined by

$$\sum_{i=0}^{2} \sum_{j=0}^{2} a_{i,j} X^{i} Y^{j} Z^{4-i-j} = 0.$$



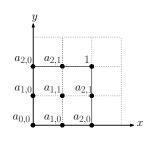
• Put Z=0 to find the points at infinity. Then, $X^2Y^2=0$; so (0:1:0) and (1:0:0) are the points at infinity of \mathbb{E}_{B} .

- So, $a_{2,2} = 1$ (scale by $a_{2,2}$).
- The projective model of

$$E_{B}: \sum_{i=0}^{2} \sum_{j=0}^{2} a_{i,j} x^{i} y^{j} = 0$$

is defined by

$$\sum_{i=0}^{2} \sum_{j=0}^{2} a_{i,j} X^{i} Y^{j} Z^{4-i-j} = 0.$$

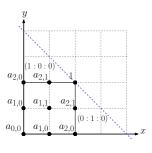


• Put Z=0 to find the points at infinity. Then, $X^2Y^2=0$; so (0:1:0) and (1:0:0) are the points at infinity of ${\rm E_B}$.

- The points at infinity are singular.
- Study the point (0:1:0), (blow-up the point), look at the Newton diagram at this point.
- Consider the polynomial corresponding to the edge γ:

$$f_{\gamma} = t^2 + a_{2,1}t + a_{2,0}.$$

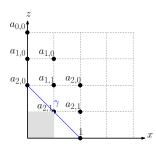
- So, $a_{2,1}, a_{2,0} \neq 0$.
- Scale curve by $x \longrightarrow a_{2,1}x$ and $y \longrightarrow a_{2,1}y$ to get $a_{2,1} = 1$.



- The points at infinity are singular.
- Study the point (0:1:0), (blow-up the point), look at the Newton diagram at this point.
- Consider the polynomial corresponding to the edge γ :

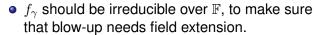
$$f_{\gamma} = t^2 + a_{2,1}t + a_{2,0}.$$

- f_{γ} should be irreducible over \mathbb{F} , to make sure that blow-up needs field extension.
- So, $a_{2,1}, a_{2,0} \neq 0$.
- Scale curve by $x \longrightarrow a_{2,1}x$ and $y \longrightarrow a_{2,1}y$ to get $a_{2,1} = 1$.

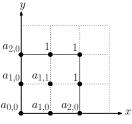


- The points at infinity are singular.
- Study the point (0:1:0), (blow-up the point), look at the Newton diagram at this point.
- Consider the polynomial corresponding to the edge γ :

$$f_{\gamma} = t^2 + a_{2,1}t + a_{2,0}.$$

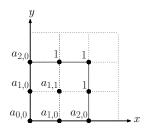


- So, $a_{2,1}, a_{2,0} \neq 0$.
- Scale curve by $x \longrightarrow a_{2,1}x$ and $y \longrightarrow a_{2,1}y$ to get $a_{2,1} = 1$.

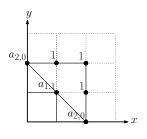


• At most one of the $a_{0,0}$ or $a_{1,0}$ is zero.

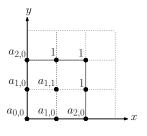
- If $a_{0,0} = a_{1,0} = 0$, then (0,0) is a singular point.
- (e.g., look at the Newton diagram at (0,0)).
- Because of the symmetry, with (x, y) also (y, x) is on curve.
- The simplest negation can be considered as -(x,y)=(y,x).
- We have a 2-torsion points (α, α) for each root α of $a_{0,0}+a_{1,1}x^2+x^4$. Also $(\alpha+\sqrt{a_{1,1}},\alpha+\sqrt{a_{1,1}})$ is the other 2-torsion point.
- E_B is an ordinary elliptic curve if it has two 2-torsion points; i.e., a_{1,1} ≠ 0.



- At most one of the a_{0,0} or a_{1,0} is zero.
 If a_{0,0} = a_{1,0} = 0, then (0,0) is a singular point.
 (e.g., look at the Newton diagram at (0,0)).
- Because of the symmetry, with (x, y) also (y, x) is on curve.
- The simplest negation can be considered as -(x,y)=(y,x).
- We have a 2-torsion points (α, α) for each root α of $a_{0,0} + a_{1,1}x^2 + x^4$. Also $(\alpha + \sqrt{a_{1,1}}, \alpha + \sqrt{a_{1,1}})$ is the other 2-torsion point.
- E_B is an ordinary elliptic curve if it has two 2-torsion points; i.e., a_{1,1} ≠ 0.

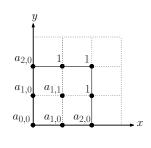


- At most one of the a_{0,0} or a_{1,0} is zero.
 If a_{0,0} = a_{1,0} = 0, then (0,0) is a singular point.
 (e.g., look at the Newton diagram at (0,0)).
- Because of the symmetry, with (x,y) also (y,x) is on curve.
- The simplest negation can be considered as -(x, y) = (y, x).
- We have a 2-torsion points (α,α) for each root α of $a_{0,0}+a_{1,1}x^2+x^4$. Also $(\alpha+\sqrt{a_{1,1}},\alpha+\sqrt{a_{1,1}})$ is the other 2-torsion point.
- E_B is an ordinary elliptic curve if it has two 2-torsion points; i.e., a_{1,1} ≠ 0.



- Most convenient choices for 2-torsion points are (0,0) and (1,1).
- So $a_{0,0} = 0$ and $a_{1,1} = 1$.
- Rename $d_1 = a_{1,0}, d_2 = a_{2,0}$.
- The affine model should be absolutely irreducible and nonsingular.
- If (x_1, y_1) is a singular point of E_B , then

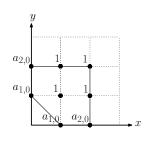
$$\begin{cases} F(x_1, y_1) = 0, \\ d_1 + x_1 + x_1^2 = 0, \\ d_1 + y_1 + y_1^2 = 0. \end{cases}$$



- Most convenient choices for 2-torsion points are (0,0) and (1,1).
- So $a_{0,0} = 0$ and $a_{1,1} = 1$.
- Rename $d_1 = a_{1,0}, d_2 = a_{2,0}$.
- The affine model should be absolutely irreducible and nonsingular.
- If (x_1, y_1) is a singular point of E_B , then

$$\begin{cases} F(x_1, y_1) = 0, \\ d_1 + x_1 + x_1^2 = 0, \\ d_1 + y_1 + y_1^2 = 0. \end{cases}$$

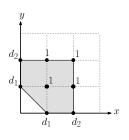
So, $x_1 = y_1$ or $x_1 + y_1 = 1$. Then, $d_1 = 0$ or $d_1^2 + d_1 = d_2$.



- Most convenient choices for 2-torsion points are (0,0) and (1,1).
- So $a_{0,0} = 0$ and $a_{1,1} = 1$.
- Rename $d_1 = a_{1,0}$, $d_2 = a_{2,0}$.
- The affine model should be absolutely irreducible and nonsingular.
- If (x_1, y_1) is a singular point of E_B , then

$$\begin{cases} F(x_1, y_1) = 0, \\ d_1 + x_1 + x_1^2 = 0, \\ d_1 + y_1 + y_1^2 = 0. \end{cases}$$

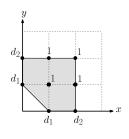
So, $x_1 = y_1$ or $x_1 + y_1 = 1$. Then, $d_1 = 0$ or $d_1^2 + d_1 = d_2$.



- Most convenient choices for 2-torsion points are (0,0) and (1,1).
- So $a_{0,0} = 0$ and $a_{1,1} = 1$.
- Rename $d_1 = a_{1,0}, d_2 = a_{2,0}$.
- The affine model should be absolutely irreducible and nonsingular.
- If (x_1, y_1) is a singular point of E_B , then

$$\begin{cases} F(x_1, y_1) = 0, \\ d_1 + x_1 + x_1^2 = 0, \\ d_1 + y_1 + y_1^2 = 0. \end{cases}$$

So,
$$x_1 = y_1$$
 or $x_1 + y_1 = 1$.
Then, $d_1 = 0$ or $d_1^2 + d_1 = d_2$.



Binary Edwards Curves

Definition (Binary Edwards curve)

Let \mathbb{F} be a field with $\operatorname{char}(\mathbb{F})=2$. Let d_1,d_2 be elements of \mathbb{F} with $d_1\neq 0$ and $d_2\neq d_1^2+d_1$. The binary Edwards curve with coefficients d_1 and d_2 is the affine curve

$$E_{B,d_1,d_2}: d_1(x+y) + d_2(x^2+y^2) = xy + xy(x+y) + x^2y^2.$$

Birational map to Weierstrass form

- Let $d = d_1^2 + d_1 + d_2$.
- The map $(x,y) \mapsto (u,v)$ defined by

$$u = \frac{d_1 d(x+y)}{xy + d_1(x+y)},$$

$$v = d_1 d(\frac{x}{xy + d_1(x+y)} + d_1 + 1)$$

is a birational equivalence from E_{B,d_1,d_2} to the elliptic curve

$$v^2 + uv = u^3 + (d_1^2 + d_2)u^2 + d_1^4 d^2$$

with j-invariant $1/(d_1^4d^2)$.

• An inverse map is given as follows:

$$x = \frac{d_1(u+d)}{u+v+(d_1^2+d_1)d},$$
$$y = \frac{d_1(u+d)}{u+d_1^2+d_2^2+d_2^2}.$$

Birational map to Weierstrass form

- Let $d = d_1^2 + d_1 + d_2$.
- The map $(x,y) \mapsto (u,v)$ defined by

$$u = \frac{d_1 d(x+y)}{xy + d_1(x+y)},$$

$$v = d_1 d(\frac{x}{xy + d_1(x+y)} + d_1 + 1)$$

is a birational equivalence from E_{B,d_1,d_2} to the elliptic curve

$$v^2 + uv = u^3 + (d_1^2 + d_2)u^2 + d_1^4 d^2$$

with *j*-invariant $1/(d_1^4d^2)$.

An inverse map is given as follows:

$$x = \frac{d_1(u+d)}{u+v+(d_1^2+d_1)d},$$
$$y = \frac{d_1(u+d)}{v+(d_1^2+d_1)d}.$$

Properties of Binary Edwards Curves

$$E_{B,d_1,d_2}: d_1(x+y) + d_2(x^2+y^2) = xy + xy(x+y) + x^2y^2.$$

• $(x_3, y_3) = (x_1, y_1) + (x_2, y_2)$ with

$$x_3 = \frac{d_1(x_1 + x_2) + d_2(x_1 + y_1)(x_2 + y_2) + (x_1 + x_1^2)(x_2(y_1 + y_2 + 1) + y_1y_2)}{d_1 + (x_1 + x_1^2)(x_2 + y_2)}$$
$$d_1(y_1 + y_2) + d_2(x_1 + y_1)(x_2 + y_2) + (y_1 + y_1^2)(y_2(x_1 + x_2 + 1) + x_1x_2)$$

$$y_3 = \frac{d_1(y_1 + y_2) + d_2(x_1 + y_1)(x_2 + y_2) + (y_1 + y_1^2)(y_2(x_1 + x_2 + 1) + x_1x_2)}{d_1 + (y_1 + y_1^2)(x_2 + y_2)}$$

- \bullet (0,0) is the neutral element; (1,1) has order 2
- $-(x_1,y_1)=(y_1,x_1).$
- $(x_1, y_1) + (1, 1) = (x_1 + 1, y_1 + 1).$

Properties of Binary Edwards Curves

$$E_{B,d_1,d_2}: d_1(x+y) + d_2(x^2+y^2) = xy + xy(x+y) + x^2y^2.$$

• $(x_3, y_3) = (x_1, y_1) + (x_2, y_2)$ with

$$x_3 = \frac{d_1(x_1 + x_2) + d_2(x_1 + y_1)(x_2 + y_2) + (x_1 + x_1^2)(x_2(y_1 + y_2 + 1) + y_1y_2)}{d_1 + (x_1 + x_1^2)(x_2 + y_2)}$$
$$y_3 = \frac{d_1(y_1 + y_2) + d_2(x_1 + y_1)(x_2 + y_2) + (y_1 + y_1^2)(y_2(x_1 + x_2 + 1) + x_1x_2)}{d_1 + (y_1 + y_1^2)(x_2 + y_2)}$$

•
$$(0,0)$$
 is the neutral element; $(1,1)$ has order 2.

- $-(x_1,y_1)=(y_1,x_1).$
- $(x_1, y_1) + (1, 1) = (x_1 + 1, y_1 + 1).$

Edwards curve over \mathbb{F}_{2^n}

• For any points (x_1,y_1) and (x_2,y_2) the denominators $d_1+(x_1+x_1^2)(x_2+y_2)$ and $d_1+(y_1+y_1^2)(x_2+y_2)$ are nonzero if $\operatorname{Tr}(d_2)\neq 0$.

If $x_2 + y_2 = 0$ then the denominators are $d_1 \neq 0$. Otherwise $d_1/(x_2 + y_2) = x_1 + x_1^2$ and

$$\frac{d_1}{x_2 + y_2} = \frac{d_1(x_2 + y_2)}{x_2^2 + y_2^2} = \frac{d_2(x_2^2 + y_2^2) + x_2y_2 + x_2y_2(x_2 + y_2) + x_2^2y_2^2}{x_2^2 + y_2^2}$$

$$= d_2 + \frac{x_2y_2 + x_2y_2(x_2 + y_2) + y_2^2}{x_2^2 + y_2^2} + \frac{y_2^2 + x_2^2y_2^2}{x_2^2 + y_2^2}$$

$$= d_2 + \frac{y_2 + x_2y_2}{x_2 + y_2} + \frac{y_2^2 + x_2^2y_2^2}{x_2^2 + y_2^2}.$$

So, $Tr(d_2) = Tr(x_1 + x_1^2) = 0$.

Edwards curve over \mathbb{F}_{2^n}

• For any points (x_1,y_1) and (x_2,y_2) the denominators $d_1+(x_1+x_1^2)(x_2+y_2)$ and $d_1+(y_1+y_1^2)(x_2+y_2)$ are nonzero if ${\rm Tr}(d_2)\neq 0$.

If $x_2+y_2=0$ then the denominators are $d_1\neq 0$. Otherwise $d_1/(x_2+y_2)=x_1+x_1^2$ and

$$\frac{d_1}{x_2 + y_2} = \frac{d_1(x_2 + y_2)}{x_2^2 + y_2^2} = \frac{d_2(x_2^2 + y_2^2) + x_2y_2 + x_2y_2(x_2 + y_2) + x_2^2y_2^2}{x_2^2 + y_2^2}$$

$$= d_2 + \frac{x_2y_2 + x_2y_2(x_2 + y_2) + y_2^2}{x_2^2 + y_2^2} + \frac{y_2^2 + x_2^2y_2^2}{x_2^2 + y_2^2}$$

$$= d_2 + \frac{y_2 + x_2y_2}{x_2 + y_2} + \frac{y_2^2 + x_2^2y_2^2}{x_2^2 + y_2^2}.$$

So,
$$Tr(d_2) = Tr(x_1 + x_1^2) = 0$$
.

Complete Edwards curve over \mathbb{F}_{2^n}

- Addition law for curves with $Tr(d_2) = 1$ is complete.
- No exceptional points, completely uniform group operation.
- In particular, addition formulas can be used to double.
- Unified group operation!
- The first complete binary elliptic curves!
- Even better, every ordinary elliptic curve over \mathbb{F}_{2^n} is birationally equivalent to a complete binary Edwards curves $\mathrm{E}_{\mathrm{B},d_1,d_2}$, for $n\geq 3$.

• $(x_3, y_3) = 2(x_1, y_1)$ with

$$x_3 = 1 + \frac{d_1(1 + x_1 + y_1)}{d_1 + x_1y_1 + x_1^2(1 + x_1 + y_1)}$$
$$y_3 = 1 + \frac{d_1(1 + x_1 + y_1)}{d_1 + x_1y_1 + y_1^2(1 + x_1 + y_1)}.$$

That is:

$$x_3 = 1 + \frac{d_1 + d_2(x_1^2 + y_1^2) + y_1^2 + y_1^4}{d_1 + x_1^2 + y_1^2 + (d_2/d_1)(x_1^4 + y_1^4)},$$

$$y_3 = 1 + \frac{d_1 + d_2(x_1^2 + y_1^2) + x_1^2 + x_1^4}{d_1 + x_1^2 + y_1^2 + (d_2/d_1)(x_1^4 + y_1^4)}$$

• $(x_3, y_3) = 2(x_1, y_1)$ with

$$x_3 = 1 + \frac{d_1(1 + x_1 + y_1)}{d_1 + x_1y_1 + x_1^2(1 + x_1 + y_1)}$$
$$y_3 = 1 + \frac{d_1(1 + x_1 + y_1)}{d_1 + x_1y_1 + y_1^2(1 + x_1 + y_1)}.$$

That is:

$$x_3 = 1 + \frac{d_1 + d_2(x_1^2 + y_1^2) + y_1^2 + y_1^4}{d_1 + x_1^2 + y_1^2 + (d_2/d_1)(x_1^4 + y_1^4)},$$

$$y_3 = 1 + \frac{d_1 + d_2(x_1^2 + y_1^2) + x_1^2 + x_1^4}{d_1 + x_1^2 + y_1^2 + (d_2/d_1)(x_1^4 + y_1^4)},$$

- The projective formulas use 2M + 6S + 3D. The 3D are multiplications by d_1 , d_2/d_1 , and d_2 .
- Can choose at least one of these constant to be small or use curve with $d_1 = d_2$, then only 2M + 5S + 2D for a doubling.
- Assume curves are chosen with small parameters.

Explicit-Formulas Database

- The projective formulas use 2M + 6S + 3D. The 3D are multiplications by d_1 , d_2/d_1 , and d_2 .
- Can choose at least one of these constant to be small or use curve with $d_1 = d_2$, then only 2M + 5S + 2D for a doubling.
- Assume curves are chosen with small parameters.

System	Cost of doubling
Projective	7M + 4S; see HEHCC
Jacobian	$4\mathbf{M} + 5\mathbf{S}$; see HEHCC
Lopez-Dahab	$3\mathbf{M} + 5\mathbf{S}$; see Lopez-Dahab
Edwards	$2\mathbf{M} + 6\mathbf{S}$; new, complete
Lopez-Dahab $a_2 = 1$	$2\mathbf{M} + 5\mathbf{S}$; Kim-Kim
Edwards $d_1 = d_2$	$2\mathbf{M} + 5\mathbf{S}$; new, complete

Explicit-Formulas Database

- The projective formulas use 2M + 6S + 3D. The 3D are multiplications by d_1 , d_2/d_1 , and d_2 .
- Can choose at least one of these constant to be small or use curve with $d_1 = d_2$, then only 2M + 5S + 2D for a doubling.
- Assume curves are chosen with small parameters.

System	Cost of doubling	
Projective	7M + 4S; see HEHCC	
Jacobian	$4\mathbf{M} + 5\mathbf{S}$; see HEHCC	
Lopez-Dahab	$3\mathbf{M} + 5\mathbf{S}$; see Lopez-Dahab	
Edwards	$2\mathbf{M} + 6\mathbf{S}$; new, complete	
Lopez-Dahab $a_2 = 1$	$2\mathbf{M} + 5\mathbf{S}$; Kim-Kim	
Edwards $d_1 = d_2$	$2\mathbf{M} + 5\mathbf{S}$; new, complete	

Explicit-Formulas Database:

www.hyperelliptic.org/EFD

19 / 25

Differential addition I

- Compute P + Q given P, Q, and Q P.
- Represent $P = (x_1, y_1)$ by $w(P) = x_1 + y_1$.
- Have w(P) = w(-P) = w(P + (1,1)) = w(-P + (1,1)).
- Can double in this representation: Let $(x_4, y_4) = (x_2, y_2) + (x_2, y_2)$. The

$$w_4 = \frac{d_1 w_2^2 + d_1 w_2^4}{d_1^2 + d_1 w_2^2 + d_2 w_2^4} = \frac{w_2^2 + w_2^4}{d_1 + w_2^2 + (d_2/d_1)w_2^4}$$

- If $d_2 = d_1$ then $w_4 = 1 + \frac{d_1}{d_1 + w_2^2 + w_2^4}$
- Projective version takes 1M+3S+2D (or 1M+3S+1D for $d_2 = d_1$).

Differential addition I

- Compute P + Q given P, Q, and Q P.
- Represent $P = (x_1, y_1)$ by $w(P) = x_1 + y_1$.
- Have w(P) = w(-P) = w(P + (1,1)) = w(-P + (1,1)).
- Can double in this representation: Let $(x_4, y_4) = (x_2, y_2) + (x_2, y_2)$. Then

$$w_4 = \frac{d_1 w_2^2 + d_1 w_2^4}{d_1^2 + d_1 w_2^2 + d_2 w_2^4} = \frac{w_2^2 + w_2^4}{d_1 + w_2^2 + (d_2/d_1)w_2^4}$$

- If $d_2 = d_1$ then $w_4 = 1 + \frac{d_1}{d_1 + w_2^2 + w_2^4}.$
- Projective version takes 1M+3S+2D (or 1M+3S+1D for $d_2 = d_1$).

Differential addition II

• Let $(x_1, y_1) = (x_3, y_3) - (x_2, y_2)$, $(x_5, y_5) = (x_2, y_2) + (x_3, y_3)$.

•

$$w_1 + w_5 = \frac{d_1 w_2 w_3 (1 + w_2) (1 + w_3)}{d_1^2 + w_2 w_3 (d_1 (1 + w_2 + w_3) + d_2 w_2 w_3)},$$

$$w_1 w_5 = \frac{d_1^2 (w_2 + w_3)^2}{d_1^2 + w_2 w_3 (d_1 (1 + w_2 + w_3) + d_2 w_2 w_3)}.$$

$$w_1 w_5 = \frac{d_1 (w_2 + w_3)^2}{d_1 + w_2 w_3 (1 + w_2) (1 + w_3)}.$$

 Some operations can be shared between differential addition and doubling.

Differential addition II

• Let $(x_1, y_1) = (x_3, y_3) - (x_2, y_2), (x_5, y_5) = (x_2, y_2) + (x_3, y_3).$

•

$$\begin{split} w_1 + w_5 &= \frac{d_1 w_2 w_3 (1 + w_2) (1 + w_3)}{d_1^2 + w_2 w_3 (d_1 (1 + w_2 + w_3) + d_2 w_2 w_3)}, \\ w_1 w_5 &= \frac{d_1^2 (w_2 + w_3)^2}{d_1^2 + w_2 w_3 (d_1 (1 + w_2 + w_3) + d_2 w_2 w_3)}. \end{split}$$

• If $d_2=d_1$ then $w_1+w_5=1+\frac{d_1}{d_1+w_2w_3(1+w_2)(1+w_3)}, \\ d_1(w_2+w_3)^2$

 $w_1 w_5 = \frac{d_1 (w_2 + w_3)^2}{d_1 + w_2 w_3 (1 + w_2)(1 + w_3)}.$

 Some operations can be shared between differential addition and doubling.

Differential addition III

• Mixed differential addition: w_1 given as affine, $w_2 = W_2/Z_2$, $w_3 = W_3/Z_3$ in projective.

	general case	$d_2 = d_1$
mixed diff addition	6M+1S+2D	5M+1S+1D
mixed diff addition+doubling	6M+4S+4D	5M+4S+2D
projective diff addition	8M+1S+2D	7M+1S+1D
projective diff addition+doubling	8M+4S+4D	7M+4S+2D

- Note that the new diff addition formulas are complete
- Lopez and Dahab use 6M+5S for mixed dADD&DBL.
- Stam uses 6M+1S for projective dADD; 4M+1S for mixed dADD addition; and 1M+3S+1D for DBL.
- Gaudry uses 5M+5S+1D for mixed dADD&DBL

Differential addition III

• Mixed differential addition: w_1 given as affine, $w_2 = W_2/Z_2$, $w_3 = W_3/Z_3$ in projective.

	general case	$d_2 = d_1$
mixed diff addition	6M+1S+2D	5M+1S+1D
mixed diff addition+doubling	6M+4S+4D	5M+4S+2D
projective diff addition	8M+1S+2D	7M+1S+1D
projective diff addition+doubling	8M+4S+4D	7M+4S+2D

- Note that the new diff addition formulas are complete.
- Lopez and Dahab use 6M+5S for mixed dADD&DBL.
- Stam uses 6M+1S for projective dADD; 4M+1S for mixed dADD addition; and 1M+3S+1D for DBL.
- Gaudry uses 5M+5S+1D for mixed dADD&DBL.

Summary

These curves are the first binary curves to offer complete addition laws. They are also surprisingly fast:

- ADD on binary Edwards curves takes 21M+1S+4D, mADD takes 13M+3S+3D.
- For small D and $d_1 = d_2$ much better: ADD in 16M+1S.
- Differential addition takes 8M+1S+2D; mixed version takes 6M+1S+2D.
- Differential addition+doubling (typical step in Montgomery ladder) takes 8M+4S+2D; mixed version takes 6M+4S+2D.

See our paper and the EFD for full details, speedups for $d_1 = d_2$, how to choose small coefficients, affine formulas, . . .

