A Faster way to do ECC

Mike Scott

Dublin City University

Joint work with

Steven Galbraith

Royal Holloway, University of London

Xibin Lin

Sun Yat-Sen University

Elliptic Curve based Crypto

- ▶ People like to use ECC because...
- ▶ 1. Smaller Key sizes
- ▶ 2. Faster implementation ←
- ▶ 3. Solid number theoretic based security

Elliptic Curve based Crypto

- ▶ For security, field size needs to be \geq 160 bits.
- ▶ We can do it over \mathbb{F}_p , and \mathbb{F}_{p^m} with small p and large prime m.
- ▶ For \mathbb{F}_{p^m} with large p and small m > 2, we need to be careful Weil descent attacks apply.
- ▶ Which leaves a largely unexplored "window of opportunity" for elliptic curves over \mathbb{F}_{p^2} (but see early work by Nogami and lijima et al. 2002/2003).

Elliptic curves over \mathbb{F}_{p^2}

- ▶ No really compelling reason to go there just for the sake of it..
- ..unless some new trick applies that makes it more efficient that $E(\mathbb{F}_p)$, in particular which speeds up variable point multiplication.

Lets back-up..

- ▶ In 2000 Gallant, Lambert and Vanstone (GLV) come up with a very nice idea..
- ▶ Consider an elliptic curve $E(\mathbb{F}_p)$ on which, when presented with a random point P, we somehow automagically know a non-trivial multiple of P, say λP .

- ▶ Then when asked to calculate kP, we can always break it down into $kP = k_0P + k_1.(\lambda P)$.
- where k_0 and k_1 have half the number of bits of k.
- ► Then we can apply a fast double-multiplication algorithm (aka multi-exponentiation), which is much faster than calculating kP directly.
- ▶ In many contexts where a random multiplier k is required, k_0 and k_1 can instead be chosen directly at random.

▶ Its not quite as simple as I made it sound.

- ▶ But how to get λP ?
- On curves with low CM discriminant, its easy!
- Let $p=1 \mod 3$, and consider the curve $E(\mathbb{F}_p): y^2=x^3+B$ of prime order r.
- ▶ Then if P(x, y) is a point on the curve, then so is $Q(\beta x, y)$, where β is a non-trivial cube root of unity mod p.

- ► Furthermore $Q = \lambda P$, where λ is a solution of $\lambda^2 + \lambda + 1 \equiv 0 \mod r$.
- $\triangleright \beta$ is in \mathbb{F}_p , λ in \mathbb{F}_r . Both can be easily pre-calculated.
- ▶ So in this case the fast method applies, because we have a suitable homomorphism $\psi(x,y) \to (\beta x,y), \ \psi(P) = \lambda P$.

- ▶ There is also the Frobenius endomorphism
- Let E be an elliptic curve defined over \mathbb{F}_q , where $q=p^m$. Then the map defined by $\psi(x,y) \to (x^q,y^q)$ is an endomorphism.
- Not useful if m = 1 and q = p.

- ▶ In fact GLV method not much used..
- ▶ In choosing regular elliptic curves we can pre-select a really nice prime p, and then search for an elliptic curve $y^2 = x^3 3x + B$ of prime order r, by iterating on B.
- ▶ This gives us a huge search space..

- ▶ For the GLV-friendly curve $y^2 = x^3 + B$, over \mathbb{F}_p there are only 6 possible curves for any particular choice of p! So, sadly, the odds are very much against the order being prime....
- ▶ So what is gained on the swings, may be lost on the roundabouts, as we may have to settle for a less than ideal form of *p*, which will make ECC slower.
- Also, there is a superstitious distrust of low CM discriminant curves.

Elliptic curves over \mathbb{F}_{p^2}

- ► Consider now the elliptic curve $E: y^2 = x^3 3x + B$ defined over \mathbb{F}_p .
- ▶ This has p + 1 t points on it.
- Now consider the same curve over \mathbb{F}_{p^2} . This has (p+1-t)(p+1+t) points on it $=p^2+1-(t^2-2p)$.
- Next consider the quadratic twist of this curve. This will have $p^2 + 1 + (t^2 2p)$ points on it, which can be a prime.
- ▶ This is where we propose to do our ECC.

The twisted curve

- ▶ The formula for the twisted curve is $E': y^2 = x^3 3u^2x + u^3B$, where u is a quadratic non-residue in \mathbb{F}_{p^2} .
- ▶ So this curve is defined over \mathbb{F}_{p^2} , and is of prime order a viable place to do ECC.
- Note that from the method of construction these are not completely general curves over \mathbb{F}_{p^2} .
- ▶ But there are a lot of them!
- ▶ If $p = 3 \mod 4$, then an element x in \mathbb{F}_{p^2} can be represented as x = (a + ib), where $i = \sqrt{-1}$. Sometimes we write this as [a, b].
- ▶ The conjugate of x is represented as $\bar{x} = a ib$.

The bonus

- On this curve we have a nice homomorphism!
- ▶ Basically we "lift" (x,y) up to the curve $E(\mathbb{F}_{p^4})$, apply the Frobenius endomorphism, and then "drop" it back down to $E'(\mathbb{F}_{p^2})$.
- $\lambda = t^{-1}(p-1) \bmod r.$
- ▶ The GLV method applies.

Multi-exponentiation $-\sum_{i=0}^{i < m} k_i P_i$

- ▶ There is a large and rather confusing literature on the subject.
- ▶ Basic idea a precomputation based on P_i, exponents k_i expressed in NAF format, then a double-and-add loop.
- ► Two methods explored Solinas's Joint Sparse Form (JSF) and the interleaving algorithm (see Hankerson, Menezes and Vanstone "Guide to Elliptic Curve Cryptography").
- ▶ Former method good for m = 2 and if little or no space available for precomputation. But interleaving seems to be faster, and generalises easier to m > 2.
- For now consider only double-exponentiation, m = 2 case, R = aP + bQ.

Interleaving algorithm – 1

- ▶ The idea here is precompute $\{P, 3P, 5P, ..., [(2w-1)/2]P\}$ and $\{Q, 3Q, 5Q, ..., [(2w-1)/2]Q\}$, for some choice of (fractional) window w. (In practise different values for w can be used for P and Q if desired).
- Convert a and b into NAF format.
- ▶ For example if $a=11_{10}=001011_2$, then $3a=33_{10}=100001_2$. Now calculate a=(3a-a)/2, doing the subtraction bit-by-bit, $a=10\bar{1}0\bar{1}$, where $\bar{1}=-1$. This is the NAF form of a.

Interleaving algorithm – 2

- ▶ Initialise a point *R* to the point-at-infinity.
- ▶ We then scan the NAFs for a and b together from left to right. As each bit is processed, double the value of R. While scanning pick out sub-sections of the corresponding NAF to get the largest multiple of P or Q which is in the precomputed tables. Add this precomputed multiple of P or Q to R.

Interleaving algorithm – 3

- For the case m = 1 this is just the normal sliding-windows algorithm for exponentiation.
- ▶ The bigger w, the more time required for precomputation, but the less additions in the main double-and-add loop. So there is an optimal value for w. In practise there would be some consideration to keep w small, to conserve memory.
- We will want to use some form of projective coordinate (x, y, z) representation for the points, as affine coordinates (x,y) will be far too slow – each addition/doubling requiring a modular inversion.

The precomputation problem -1

- ▶ Rather overlooked in the literature. Given P in affine coordinates, find $\{P, 3P, 5P, ..., [(2w-1)/2]P\}$, also in affine coordinates (as ideally we would like the additions in the main loop to be "mixed" additions)
- So calculate 2P in affine coordinates, and keep adding it to P in affine coordinates. Too slow.
- ▶ Calculate 2P in affine coordinates, then keep adding it to P in projective coordinates. Then convert $\{3P, 5P, ..., [(2w-1)/2]P\}$ to affine coordinates all together using Montgomery's trick. Two inversions in total.
- Montgomery's trick Given $1/(z_1.z_2)$ then $1/z_1=z_2/(z_1.z_2)$ and $1/z_2=z_1/(z_1.z_2)$

The precomputation problem -2

- ▶ Dahmen, Okeya and Schepers (DOS), and recently Longa and Miri, have come up with clever fast techniques requiring only one inversion. See also recent review paper by Bernstein and Lange (2008)
- ▶ New idea (?)
- ▶ From *P*, calculate 3*P*, and then double it to get 6*P*. Then calculate 6*P* − *P* and 6*P* + *P* together (which can share most of the calculation) to get 5*P* and 7*P*. Then double 5*P* to get 10*P*, and calculate 10*P* + *P* and 10*P* − *P*, to get 9*P* and 11*P*, etc. Note that *W* + *P* and *W* − *P* have the same *z* coordinates, so less values to be inverted via Montgomery. All additions are mixed.
- Idea works well over any field, any projective representation. However not quite as fast as DOS.

Multi-exponentiation with a homomorphism

- ▶ On our proposed curves a variable point multiplication can be calculated as $kP = k_0P + k_1Q$, where $Q = \psi(P)$.
- ▶ So having precomputed the table $\{P,3P,5P,..,[(2w-1)/2]P\}$, the second table can be quickly calculated from this one by simply applying ψ to each of its elements.

Finding a curve

- ▶ For AES-128 level of security, it makes sense to choose $p = 2^{127} 1$ (which God surely supplied for this very purpose...). Observe that $p = 7 \mod 8$, and $p = 2 \mod 5$.
- ▶ We use a modified Schoof algorithm to find an elliptic curve such that $E(\mathbb{F}_p)$: $p^2 + 1 + (t^2 2p)$ is prime. Note that point counting on a 127-bit curve like this is very fast.
- ▶ The first suitable curve we find (by incrementing the B parameter in the Weierstrass form) is $E: y^2 = x^3 3x + 44$, for which t = 3204F5AE088C39A7.
- ▶ Choose as a quadratic non-residue u = 2 + i.

The homomorphism

- ▶ The homomorphism is $\psi(x,y) = (\omega_x \bar{x}, \omega_y \bar{y})$, where
- $\omega_{x} = [(p+3)/5, (3p+4)/4]$
- $\omega_y =$ [12B04E814703D49C1AFAC10F88821962, 426B94A2AD451F296F755142FE73FB62]
- $\lambda = \\ B6F12BDE99042C16290B3B18FD545035402B0743BC131F5B775D928BCFBCD7A$
- $\qquad \qquad \psi(P) = \lambda P.$

The implementation

- ▶ We choose regular Jacobian coordinates, a reasonably efficient projective form supported by many standards.
- ▶ For the double-exponentiation, we choose w = 5, which is close to optimal.
- ▶ Assume a field multiplication over \mathbb{F}_p has a cost of m.
- ▶ A field multiplication over \mathbb{F}_{p^2} requires 3 multiplications over \mathbb{F}_p , using Karatsuba.
- ▶ A field squaring over \mathbb{F}_{p^2} requires 2 multiplications over \mathbb{F}_p .
- ► The theoretical cost of a variable point multiplication, using the homomorphism, is 4147m.
- (plus cost of modular additions/subtractions, plus 2 inversions)

The competition

- ▶ What to compare with?
- ▶ Initially consider an elliptic curve $E(\mathbb{F}_p)$, for p a pseudo mersenne 256-bit prime. Again we use standard Jacobian coordinates
- Assume a field multiplication over \mathbb{F}_p in this case has a cost of M.
- ► The theoretical cost of a variable point multiplication using Jacobian coordinates is 2614M

The comparison

- ▶ We also count the number of operations required for implementing $E'(\mathbb{F}_{p^2})$ without using the homomorphism
- ▶ Important note there are two effects which impact the comparison the effect of moving from $E(\mathbb{F}_p)$ (256-bit prime) to $E'(\mathbb{F}_{p^2})$ (128-bit prime) and the effect of exploiting the homomorphism.
- ▶ We want to be able to distinguish between these two effects.

Actual counts

Table: Point multiplication operation counts

	Method	\mathbb{F}_p muls	\mathbb{F}_p adds/subs
$E(\mathbb{F}_p)$, 256-bit p	SSW	2600	3775
$E'(\mathbb{F}_{p^2})$, 127-bit p	SSW	6641	16997
$E'(\mathbb{F}_{p^2})$, 127-bit p	GLV+JSF	4423	10785
$E'(\mathbb{F}_{p^2})$, 127-bit p	GLV+INT	4109	10112

What can be concluded?

- ▶ The theoretical and actual results are very close.
- ▶ But how to compare 2600M against 4109m?
- ▶ It clearly depends on the m/M ratio.
- ▶ What about all those extra modular additions in the $E'(\mathbb{F}_{p^2})$ case?
- ▶ In all cases just 2 modular inversions required.

Lets get real..

- ► Comparisons like this only get us so far...
- ▶ We need real implementations to compare against.
- ▶ Idea: Set up a straw-man implementation and beat the hell out of it. Hmm...

An 8-bit processor

- ▶ The Atmel Atmega 1281 is a nice 8-bit RISC architecture.
- ▶ 32 registers, and an 8x8 bit multiply instruction.
- Popular choice for Wireless Sensor Networks.
- ► Free cycle accurate simulator is available works with GCC tool chain.
- Only 8Kbytes of RAM...

8-bit implementation

- ► We have tools to automatically generate unlooped assembly language code for modular multiplication.
- Modular multiplication/squaring dominates the execution time.
- ▶ Compared head-to-head with 256-bit prime $E(\mathbb{F}_p)$ implementation. (In what follows $E'(\mathbb{F}_{p^2})$ refers to a 128-bit prime p, $E(\mathbb{F}_p)$ refers to a 256-bit prime p.)
- ▶ \mathbb{F}_{p^2} modmul takes 2327 μ S, modsqr takes 1529 μ S, modadd takes 174 μ S
- ▶ \mathbb{F}_p modmul takes 1995 μ S, modsqr takes 1616 μ S, modadd takes 124 μ S

Whats going on?

- ▶ It appears that simply moving to a quadratic extension is not going to be beneficial.
- ▶ A 128-bit \mathbb{F}_{p^2} modmul using Karatsuba requires 3 multiplication, followed by 3 reductions modulo p, plus 5 modular additions/subtractions. A 256-bit \mathbb{F}_p modmul requires just one (albeit larger) multiplication, and one reduction.
- Hopefully using the homomorphism will overcome this initial disadvantage....

8-bit results

Table: Point multiplication timings – 8-bit processor

Atmel Atmega1281 processor	Method	Time (s)
$E(\mathbb{F}_p)$, (256-bit p)	SSW	5.49
$E'(\mathbb{F}_{p^2})$ (127-bit p)	SSW	6.20
$E'(\mathbb{F}_{p^2})$, (127-bit p)	GLV+JSF	4.21
$E'(\mathbb{F}_{p^2})$, (127-bit p)	GLV+INT	3.87

A 64-bit processor

- ► Almost all new desktop and laptop computers use a 64-bit Intel Core 2, or AMD equivalent.
- ▶ 64-bit computing has arrived (as has multi-core computing, but thats another story..)
- ▶ On a 64-bit processor an element of \mathbb{F}_p for p a 127-bit mersenne prime, can be stored in just 2 registers! This is not multi-precision, its double precision!
- Writing an assembly language module to handle field arithmetic is very easy (1 day to write, 1 day to optimize/debug).

64-bit issues

- Now the field additions/subtractions cannot be ignored as n becomes smaller (here n=2) O(n) and O(1) contributions become significant, and are no longer completely dominated by the $O(n^2)$ operations like multiplication and squaring.
- General purpose multi-precision techniques become very inefficient (Avanzi)
- Field specific code will be much faster (see MPFQ, Gaudry-Thomé)
- As we ruthlessly optimize the code, components that one would think are utterly negligible (like computing and scanning the NAF), become significant.

64-bit issues

➤ "Squishing" — the cycle of profiling, identifying "hotspots", and optimizing the code, to squeeze down timings.

64-bit issues

➤ "Squantum effects" — the strange tendency of apparently insignificant operations, to become significant while squishing.

Modular addition

- ► Since this is now significant, perhaps its time to look at its implementation..
- ▶ Let x = a + b, if x > p then x = x p. Return x.
- ▶ This necessitates a horribly unpredictable branch which deeply pipelined processors hate, and (if mispredicted) punish severely with wasted cycles as it flushes and re-initialises the pipeline.
- ► Can be avoided using a mersenne (or pseudo-mersenne) modulus (details left as exercise for the reader...)

Profiling

- ▶ Profiling our code shows that it spends 49% of its time doing \mathbb{F}_p modmuls and modsqrs. It spends 15% of its times doing \mathbb{F}_p modadds and modsubs. Its spends 6% of its time doing the few modular inversions.
- ▶ The remaining 30% of the time is spent on (what ought to be) minor tasks, like NAF calculation, memory initialisation and "glue" code that calls the significant functions.

The competition

- ► Strategy identify the fastest implementation out there for ECC at the AES-128 level, and try to beat it.
- ► The current record is held by Gaudry and Thomé (SPEED 2007), for an implementation of Bernstein's curve25519
- ➤ This curve is ideal for an elliptic curve using Montgomery coordinates, and is designed specifically for a very fast Diffie-Hellman implementation. It has other advantages (side-channel attack resistance for example).

How to fairly compare?

- ▶ It would be useful to have an independent external facility to do the comparisions.
- Ideally this facility would have access to numerous different models of computers.
- Such a facility exists eBats, a.k.a SuperCop. and should be more widely used.
- We have made our code available in the form of a fast DH key-exchange implementation eBat.

Results

Table: Point multiplication timings – 64-bit processor

Intel Core 2 processor	Method	Clock cycles
$E(\mathbb{F}_p)$, 255-bit p	Montgomery (Gaudry-Thomé)	386,000
$E'(\mathbb{F}_{p^2})$, 127-bit p	SSW	490,000
$E'(\mathbb{F}_{p^2})$, 127-bit p	GLV+JSF	359,000
$E'(\mathbb{F}_{p^2})$, 127-bit p	GLV+INT	326,000

Signature Verification

- ► This would require the calculation of $R = a_0 P + a_1 \psi(P) + b_0 Q + b_1 \psi(Q)$.
- That is a 4-dim multi-exponentiation.
- Since P and therefore $\psi(P)$ are fixed, precomputed tables can be calculated offline using a much bigger fractional window size w.
- ► Fortunately the interleaving algorithm allows this.
- Antipa et al. have a nice trick also using multi-exponentiation for ECDSA verification on regular $E(\mathbb{F}_p)$ curves.

Signature Verification - Timings

Table: Signature Verification timings – 64-bit processor

Intel Core 2 processor	Method	\mathbb{F}_p muls	\mathbb{F}_p adds/subs	Clock cycles
$E'(\mathbb{F}_{p^2})$, 127-bit p	INT	7638	19046	581,000
$E'(\mathbb{F}_{p^2})$, 127-bit p	GLV+INT	5174	12352	425,000

Future work

► Consider implementation over binary fields

Future work

▶ .. too late! Already done by Hankerson et al. (2008)

Future work

- ▶ Our implementation would certainly benefit from a better parameterisation than standard Jacobian. (Edwards, Jacobi Quartic, Inverse Edwards etc.). Note that on the 64-bit processor, over \mathbb{F}_{p^2} , the I/M ratio is about 20.
- ► Maybe a 10% improvement is possible.
- Montgomery and multi-exponentiation do not work well together – so this is not really an option.
- ► Hard to extend to, for example, Hyperelliptic curves, as Weil descent becomes viable again.
- ▶ Implement on an FPGA. Lots of low level parallelism to be exploited....

Question Time

► Thank you for your attention