Daniel R. L. Brown

Certicom Research

ECC 2008, Utrecht, Sep 22-24 2008

ooe
certicom

DA

u]
v
a
v
a
i
v
a
it
-
et
ece
cce

© ECoH

@ Background
@ Evolution

@ Implementation
e CFV

© One-Up Problem for ECDSA

© Conclusion

Pad message block M; into a point P;.
T=> P

Do the same for T. Truncate to get hash H.

oo

ooe

£33

certicom™
«O>» «Fr «Er < = Al

Wang, Feng, Lai, Yu: collision FOUND in MD5.
Wang, Yin, Yu: 2% collision algorithm for SHA-1
Wang, Yao, Yao: 2% collision algorithm for SHA-1
NIST: please use SHA-2

NIST: is SHA-2 ok?

NIST: SHA-3 competition, AES-style

@ Some like to call “"AHS"

®

®

(]

®

®

e Wang, Feng, Lai, Yu: collision FOUND in MD5.

@ Wang, Yin, Yu: 2% collision algorithm for SHA-1

e Wang, Feng, Lai, Yu: collision FOUND in MD5.
e Wang, Yao, Yao:

@ Wang, Yin, Yu: 2% collision algorithm for SHA-1
263

collision algorithm for SHA-1

e Wang, Feng, Lai, Yu: collision FOUND in MD5.
@ Wang, Yin, Yu: 2% collision algorithm for SHA-1

@ Wang, Yao, Yao: 2% collision algorithm for SHA-1
@ NIST: please use SHA-2

ECOH Background

Motivation: SHA-3

e Wang, Feng, Lai, Yu: collision FOUND in MD5.

e Wang, Yin, Yu: 2% collision algorithm for SHA-1
@ Wang, Yao, Yao: 2% collision algorithm for SHA-1
@ NIST: please use SHA-2

@ NIST: is SHA-2 ok?

o
2229
P2

certicom®

Dan Brown (Certicom) Elliptic Curve Hash (and Sign) ECC 2008 4 /43

ECOH Background

Motivation: SHA-3

e Wang, Feng, Lai, Yu: collision FOUND in MD5.

e Wang, Yin, Yu: 2% collision algorithm for SHA-1
@ Wang, Yao, Yao: 2% collision algorithm for SHA-1
@ NIST: please use SHA-2

@ NIST: is SHA-2 ok?

@ NIST: SHA-3 competition, AES-style

o
2229
P2

certicom®

Dan Brown (Certicom) Elliptic Curve Hash (and Sign) ECC 2008 4 /43

ECOH Background

Motivation: SHA-3

e Wang, Feng, Lai, Yu: collision FOUND in MD5.

e Wang, Yin, Yu: 2% collision algorithm for SHA-1
@ Wang, Yao, Yao: 2% collision algorithm for SHA-1
NIST: please use SHA-2

NIST: is SHA-2 ok?

NIST: SHA-3 competition, AES-style

Some like to call “AHS”

o
2229
P2

certicom®

Dan Brown (Certicom) Elliptic Curve Hash (and Sign) ECC 2008 4 /43

H(m, n) = mP + nQ
A collision in H gives logp(Q).

u]
8]
i
it

et
O

2

2%

H(m, n) = mP + nQ
A collision in H gives logp(Q).
If H(a, b) = H(c, d), then
aP + bQ = cP + dQ
and solving logp(Q) =

a—c

&= mod n.

(2)

n}
8]
i
it
et

Ny
£ D
03

@ Provably secure assuming ECDLP hard.
e 3m/2 EC adds per 2m bits.

@ Compression factor 2, must be iterated.

oo

22

oo

certicom*

«O» «Fr «=)r «E)» = Q>

Let P; = F(i||M;), where F is a "random oracle”. Let

(3)

@ One EC add per m bits.

» E.g. 384 times faster than CHP.
o Parallelizable.

@ Incremental:

> H'=H—P;+ P

@ Provably secure, assuming ECDLP hard and F random oracle

oo

22

oo

certicom*

«O» «Fr «=)r «E)» = Q>

@ Assumes F is a random oracle.
@ Insecure if F insecure.

» Must already have a collision-resistant F.
» SHA-1?7 SHA-2? SHA-37

oo

22

oo

certicom*

«O» «Fr «=)r «E)» Q>

@ Leverage from MuHASH:
» Speed.

» Parallelizability.

» Incrementality.

@ Avoid reliance on pre-existing F.

oo

22

oo

certicom*

«O» «Fr «=)r «E)» = Q>

@ Replace F by fixed key block cipher:
H="Y F(illM) (4)

@ Encrypted Elliptic Curve Hash (EECH) born.
@ No collisions in F, guaranteed.
@ Model F by ideal cipher.

@ Rehash Bellare and Micciancio’s security proof.

@ Replace F by fixed key block cipher:

H = ZF(iIIM;)

(4)

@ Encrypted Elliptic Curve Hash (EECH) born.

@ Replace F by fixed key block cipher:

H = ZF(iIIM;)

(4)

@ Encrypted Elliptic Curve Hash (EECH) born.
@ No collisions in F, guaranteed.

@ Replace F by fixed key block cipher:

H = ZF(iIIM;)

(4)

@ Encrypted Elliptic Curve Hash (EECH) born.
@ No collisions in F, guaranteed.

@ Model F by ideal cipher.

ECOH Evolution

EECH

Replace F by fixed key block cipher:
H="Y F(illM) (4)

Encrypted Elliptic Curve Hash (EECH) born.
No collisions in F, guaranteed.

Model F by ideal cipher.

Rehash Bellare and Micciancio's security proof.

o
2229
P2

certicom®

Dan Brown (Certicom) Elliptic Curve Hash (and Sign) ECC 2008 11 / 43

@ Unlike MuHASH, F now invertible.

@ If adversary knows M; and M5 but not M,, then

2| My = FH(H(My, My, M3) — F(1]|My) — F(3|M3))

@ Unlike MuHASH, F now invertible.

o If adversary knows M; and M3 but not M,, then

2| M = F7H(H(My, My, M3) — F(1]| M) — F(3]|Ms))

(5)

» Scalar multiply?
» EECH again?

» Pairing?

» Checksum in extra block?

@ Post-process with one-way function?

@ Seems to thwart block inversion attack.

@ Interferes with incrementality.

oo
ooe
£33
certicom™
«Or «Fr «E>» E = DA

ECOH Evolution

Ouch: Not collision resistant!

Let

2D = F7Y(F(1]|A) + F(2]|B) — F(1]|C)) (6)
Probability of index 2 appearing depends its bit length. Try that
many C values, until it works.
Then

F(1]|A) + F(2]|B) = F(1]|C) + F(2|| D), (7)
i.e. a collision H(A, B) = H(C, D).
Second preimage attack!

o
2229
P2

certicom®

Dan Brown (Certicom) Elliptic Curve Hash (and Sign) ECC 2008 14 / 43

e Pad M;, before applying F.

e If F random enough, inverting will not give requisite padding.

ol

D d

Lad

certicom™

«O» «Fr «=)r «E)» = Q>

@ Now that EECH is all fixed ...

@ just set F to the identity function.

@ Elliptic Curve Only Hash.

oo

ooe

£33

certicom™

«O> (Fr «Er EF = DA

@ Now that EECH is all fixed ...

@ just set F to the identity function.

@ Elliptic Curve Only Hash.

oo
ooe
£33
certicom™
«O>» «F»r «E>» E = DA

@ Now that EECH is all fixed ...

@ just set F to the identity function.
e Elliptic Curve Only Hash.

ol

D d

Lad

certicom™

«O» «Fr «=)r «E)» = Q>

e Purity of ECOH.

@ No dependence on ideal cipher model.
@ No performance cost of enciphering.

@ Is it more crazy to:

oo

ooe

£33

certicom™

<O <Fr «E=r» «=Hr» E 9DAC

e Purity of ECOH.

@ No dependence on ideal cipher model.
No performance cost of enciphering.

Is it more crazy to:

oo
ooe
£33
certicom™
«O>» «F»r «E>» E = DA

e Purity of ECOH.

@ No dependence on ideal cipher model.

@ No performance cost of enciphering.

oo
ooe
£33
certicom™
«Or «Fr «E>» E = DA

e Purity of ECOH.

@ No dependence on ideal cipher model.
@ No performance cost of enciphering.
» ECOH is already slow enough.

oo

22

oo

certicom*

«O» «Fr «=)r «E)» = Q>

e Purity of ECOH.

@ No dependence on ideal cipher model.
@ No performance cost of enciphering.

» ECOH is already slow enough.
@ Is it more crazy to:

o
e
b33
certicom*
«O» «Fr «=>» = = Q>

e Purity of ECOH.

@ No dependence on ideal cipher model.
@ No performance cost of enciphering.

» ECOH is already slow enough.
@ Is it more crazy to:

» encrypt with a fixed key,

oo
ooe
£33
certicom™
«Or «Fr «E>» E = DA

e Purity of ECOH.

@ No dependence on ideal cipher model.
@ No performance cost of enciphering.
» ECOH is already slow enough.
@ Is it more crazy to:

» encrypt with a fixed key,
» do nothing?

oo
ooe
£33
certicom™
«Or «Fr «E>» E = DA

@ Generic group model!

» Detailed version in progress.
o Big deal ...

ol

D d

Lad

certicom™

«O> «F>r «=» «E» = Q>

@ Semaev summation polynomial

(X, ..
if and only if there exist Y; with

LX) =0

(XI, Yl) + -+ (Xna Yn) =0.
@ Degree in each variable 272

oo

22

oo

certicom*

«O» «Fr «=)r «E)» = Q>

ECOH Evolution

Second Preimage Attack on ECOH

o Given X3 and Xj,.
@ Find Xj and X5, such that

(X1, Y1) + (X2, Y2) = (X5, Y3) + (X4, Ya)

which implies
f;l(X17X27X37X4) =0

e Total degree 2(2472) = 4.
e X; = ¢;Z; + d;, where Z; has low degree.

g(Zla Z2) =0

Dan Brown (Certicom) Elliptic Curve Hash (and Sign) ECC 2008

o
2229
P2

certicom®

20 / 43

used to solve ECDLP.

@ Semaev: low degree solutions to Summation polynomials can be

ol

22

Lad

certicom™

«O» «Fr «=)r «E)» Q>

used to solve ECDLP.

@ Semaev: low degree solutions to Summation polynomials can be
solutions.

e Contrapositive: if ECDLP hard, then hard to find low degree

ol

22

Lad

certicom™

«O» «Fr «=)r «E)» = Q>

ECOH Evolution

@ Semaev: low degree solutions to Summation polynomials can be
used to solve ECDLP.

e Contrapositive: if ECDLP hard, then hard to find low degree
solutions.

@ But: ECOH degrees much higher than Semaev degrees.

o
2229
P2

certicom®

Dan Brown (Certicom) Elliptic Curve Hash (and Sign) ECC 2008 21 /43

@ NIST recommended curves:
» B-283,

» B-409,
» B-571.

bod

L ad

e

certicom™

«4O0>» «Fr «Er» «E)» = Q>

message block.

@ y solved by quadratic equation involving x containing padded

ol

D d

Lad

certicom™

«O» «Fr «=)r «E)» Q>

message block.

@ y solved by quadratic equation involving x containing padded

@ Quadratic equations faster in binary fields than in prime fields

oo

22

oo

certicom*

«O» «Fr «=)r «E)» = Q>

message block.

@ y solved by quadratic equation involving x containing padded

» Use linear half-trace function (not square root)

oo

22

oo

certicom*

«O» «Fr «=)r «E)» = Q>

@ Quadratic equations faster in binary fields than in prime fields

message block.

@ y solved by quadratic equation involving x containing padded

» Use linear half-trace function (not square root)

oo

22

oo

certicom*

«O» «Fr «=)r «E)» = Q>

@ Quadratic equations faster in binary fields than in prime fields
» Use look up tables.

ECOH Implementation

Why Binary?

@ y solved by quadratic equation involving x containing padded
message block.

@ Quadratic equations faster in binary fields than in prime fields

» Use linear half-trace function (not square root)
» Use look up tables.

@ Bonus: Intel announced AVX will include binary polynomial
multiplier.

o
2229
P2

certicom®

Dan Brown (Certicom) Elliptic Curve Hash (and Sign) ECC 2008 23 /43

ECOH Implementation

Reference implementation

e Coded by Matt J. Campagna (who also helped with specification
of ECOH details)
@ Features:

» Bit lookups for trace function

» Table lookups for squaring and half-trace
» Basic shift-and-xor polynomial multiply
» Affine coordinates

@ Rate on a desktop: 0.14 MB/s

o
2229
P2

certicom®

Dan Brown (Certicom) Elliptic Curve Hash (and Sign) ECC 2008 24 / 43

ECOH Implementation

Possible optimizations

@ Other coordinates?

» Not predicted to help.
@ Better multiplication:

» Should help somewhat.
@ Simultaneous inversions:

» Each solving for y requires inversion.

» Each addition requires inversion.

» These can be replaced a few inversion and a corresponding
number of multiplies.

» Predicted speedup: maybe five times?

@ Parallelization

o
2229
P2

certicom®

Dan Brown (Certicom) Elliptic Curve Hash (and Sign) ECC 2008 25 /43

ECOH Implementation

Hash with a Twist

@ Bernstein: x-only DH with “invalid” x thrown to the twist.
e EECH/ECOH: every x maps to a point on curve or its twist
@ Get one total and twisted total

@ Sum these on curve over quadratic extension.

o
2229
P2

certicom®

Dan Brown (Certicom) Elliptic Curve Hash (and Sign) ECC 2008 26 / 43

0.14 MB/s

x 5 (simultaneous inversion, etc.)
x 10 (Intel AVX)

x 10 (ten CPU multicore)

70 MB/s
Faster than SHA-17?

e Matt Campagna
@ René Struik

P

Pe+

b

certicom-

«O>» <Fr «=» «E» o

@ Implementers

(] Cl’ypta na IySis

@ Security provers

P

P 508

b

certicom-

«Or «Fr «=>r «E» ~ i

A group G and a function f : G — Z. I
@ Use multiplicative notation for G.
e Call f the conversion function.
«O» «Fr «=» <« » = :;;t:m(':
~ DanBrown (Certicom) Elliptic Curve Hash (and Sign) ~ ECC2008 30 /43

Given a, b € G, find ¢ such that

c = ab’®
@ One is up: a'.
@ One c is up.

(8)

oo
ooe
£33
certicom™
«Or «Fr «E>» E = DA

One-Up Problem for ECDSA

Convertible DSA

Definition

Let g € G have order n. Let h: {0,1}* — Z be a hash function.
Then (r,s) is a valid signature on message m € {0, 1}* under public
key y € G, only if gcd(s,n) =1 and

r=1((g"my)" ™). ©)

@ Includes DSA.
@ Includes ECDSA.

o
2229
P2

certicom®

Dan Brown (Certicom) Elliptic Curve Hash (and Sign) ECC 2008 32 /43

(G, f,g, h) is forgeable.

If the one-up problem for (G, f) is solvable, then Convertible DSA for

group operations and converstions.

For the (G, f) in ECDSA, solving the 1-up problem costs about n

ol

22

Lad

certicom™

«O» «Fr «=)r «E)» = Q>

One-Up Problem for ECDSA

Up's enough?

Conjecture

Convertible DSA resists universal forgery against key-only attacks
(UF-KOA) if

Q Discrete logs hard in G.

@ One up hard in (G, f).

© Hash h mod n is rarely zero.

More powerful forgery attacks resisted if hash has further security
properties (e.g. collision resistance).

o
2229
P2

certicom®

Dan Brown (Certicom) Elliptic Curve Hash (and Sign) ECC 2008 35 /43

o If discrete logs easy, ...

@ Can one-up problem be hard?
o Maybe, if f ...

@ is random oracle.

«O> «F>» «=Z)r» «=)>» = Q>

@ In generic group model,

o If advesary gets access to one-up oracle, then
@ Discrete logs still hard.

ol

D d

Lad

certicom™

«O» «Fr «=)r «E)» Q>

One-Up Problem for ECDSA

Semilog problem

Definition (ECC 2001, Advances in ECC)

A semilog of y is a pair (r,s) which would be valid signature under
public key y if the message had hash equal to one.

Theorem (ECC 2001/Advances in ECC)

ECDSA resists UF-KOA if and only if semilog is hard and hash is
rarely zero.

o
2229
P2

certicom®

Dan Brown (Certicom) Elliptic Curve Hash (and Sign) ECC 2008 38 /43

@ the 1-up problem if s is fixed.

oo

22

oo

certicom*

«O» «Fr «=)r «E)» = Q>

The semilog problem, with one component is fixed, is equivalent to
@ the discrete log problem if r is fixed.

e If f(x) = log,(x), then
@ One-up problem equivalent to DHP
@ This f is impractial, so

@ result is only theoretical.

«O>» «Fr «=>» «E=)» = Q>

@ Pointcheval and Stern couldn’t prove ECDSA secure in random
oracle model, assuming only hard log.

ol

22

Lad

certicom™

«O» «Fr «=)r «E)» Q>

One-Up Problem for ECDSA

One-Up as Obstacle

@ Pointcheval and Stern couldn’t prove ECDSA secure in random
oracle model, assuming only hard log.

@ Paillier and Vergnaud argued ECDSA couldn’t be proved secure
in the random oracle model, assuming hard log (unless one-more
log problem was easy).

o
2229
P2

certicom®

Dan Brown (Certicom) Elliptic Curve Hash (and Sign) ECC 2008 41 /43

One-Up Problem for ECDSA

One-Up as Obstacle

@ Pointcheval and Stern couldn’t prove ECDSA secure in random
oracle model, assuming only hard log.

@ Paillier and Vergnaud argued ECDSA couldn’t be proved secure
in the random oracle model, assuming hard log (unless one-more
log problem was easy).

@ Perhaps one-up problem was hidden obstacle.

o
2229
P2

certicom®

Dan Brown (Certicom) Elliptic Curve Hash (and Sign) ECC 2008 41 /43

One-Up Problem for ECDSA

One-Up as Obstacle

@ Pointcheval and Stern couldn’t prove ECDSA secure in random
oracle model, assuming only hard log.

@ Paillier and Vergnaud argued ECDSA couldn’t be proved secure
in the random oracle model, assuming hard log (unless one-more
log problem was easy).

@ Perhaps one-up problem was hidden obstacle.

@ Not possible to prove ECDSA secure given only hard log,
because one-up could be easy.

o
2229
P2

certicom®

Dan Brown (Certicom) Elliptic Curve Hash (and Sign) ECC 2008 41 /43

One-Up Problem for ECDSA

One-Up as Obstacle

@ Pointcheval and Stern couldn’t prove ECDSA secure in random
oracle model, assuming only hard log.

@ Paillier and Vergnaud argued ECDSA couldn’t be proved secure
in the random oracle model, assuming hard log (unless one-more
log problem was easy).

@ Perhaps one-up problem was hidden obstacle.

@ Not possible to prove ECDSA secure given only hard log,
because one-up could be easy.

@ In practice, though, one-up seems harder than log!
cer:ii:m‘

Dan Brown (Certicom) Elliptic Curve Hash (and Sign) ECC 2008 41 /43

@ No bit twiddling — pure algebra.

@ Use the same curve for both.

oo
ooe
£33
certicom™
«Or «Fr «E>» E = DA

e ECC: not just for PKC and RNGs, anymore!

@ ECOH: who needs need bit twiddling, now?
e ECDSA: One-up? Okay.

	ECOH
	Background
	Evolution
	Implementation
	CFV

	One-Up Problem for ECDSA
	Conclusion

