

E-Passport: Cracking Basic Access Control Keys with COPACOBANA

Yifei Liu, Timo Kasper, Kerstin Lemke-Rust and Christof Paar

Communication Security Group Ruhr University Bochum, Germany

http://www.crypto.rub.de

Outline

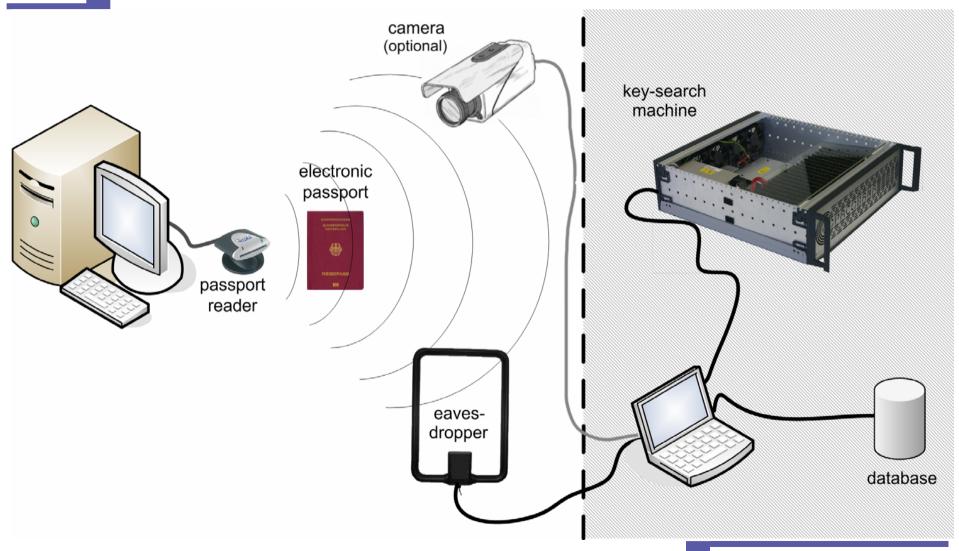
- 1. Introduction to the E-Passport
- 2. The Attack Scenario
- 3. Basic Access Control (BAC) Protocol
- 4. Complexity Analysis of Key Space
- 5. Introduction to COPACOBANA Hardware
- 6. Implementation of the BAC key-search
- 7. Practical Results
- 8. Conclusion

Introduction to the E-Passport

- Standardized by the ICAO*
- Contactless chip stores data
- Basic Access Control
- Encryption of interchanged data
- Passive Authentication
- Extended Access Control

Security Mechanisms of the Epass

- Standarized by the ICAO
- Contactless chip stores data
- Basic Access Control
- Encryption of interchanged data
- Passive Authentication
- Extended Access Control



→ prevents unauthorized access to personal data ?

The Attack Scenario

Basic Access Control (BAC)

Reader (IFD)

E-Pass (ICC)

 $\frac{\mathsf{RND}_{\mathsf{ICC}}}{\mathsf{RND}_{\mathsf{ICC}}} \in \{0,1\}^{64}$

 $RND_{IFD} \in \{0,1\}^{64}$, $K_{IFD} \in \, \{0,1\}^{128}$

 $E_{IFD} := ENC_{K_ENC} (RND_{IFD} || RND_{ICC} || K_{IFD})$

 $\mathsf{M}_{\mathsf{IFD}} \coloneqq \mathsf{MAC}_{\mathsf{K}_\mathsf{MAC}} \; (\mathsf{E}_{\mathsf{IFD}})$

plaintext

ciphertext

decrypt and verify E_{IFD} || M_{IFD}

 $K_{ICC} \in \{0,1\}^{128}$

plaintext

 $ciphertext = msb_8 (E_{ICC})$

 $E_{ICC} := ENC_{K_ENC} (RND_{ICC} || RND_{IFD} || K_{ICC})$

 $M_{ICC} := MAC_{K_MAC} (C_{ICC})$

 $\mathsf{E}_{\mathsf{ICC}} \, || \, \mathsf{M}_{\mathsf{ICC}}$

E_{IFD} M_{IFD}

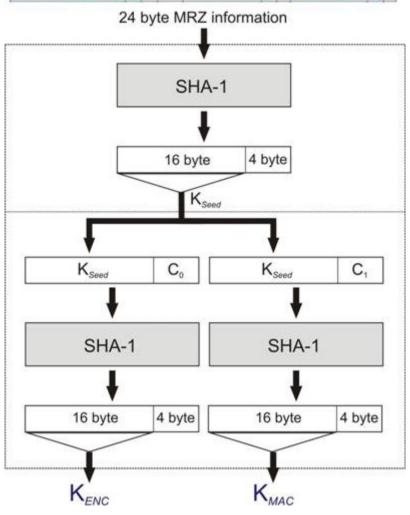
 $\mathsf{KS}_\mathsf{Seed} := \mathsf{K}_\mathsf{IFD} \oplus \mathsf{K}_\mathsf{ICC}$

decrypt and verify $E_{ICC} \parallel M_{ICC}$

 $\mathsf{KS}_\mathsf{Seed} := \mathsf{K}_\mathsf{IFD} \oplus \mathsf{K}_\mathsf{ICC}$

Derivation of BAC Keys

Information of the MRZ (Machine Readable Zone) is used for key derivation:


P <d<<lastname<<firstname<<<< th=""></d<<lastname<<firstname<<<<>						
122000001	6D<<	640812	25F1	111007	78<	
passport number	check digit 1 nationality	date of birth	check digit 2 sex	passport expiration date	check digit 3	

Derivation of BAC Keys

- $C_0 = 00 \ 00 \ 00 \ 01 \ for \ K_{ENC}$
- $C_1 = 00 \ 00 \ 00 \ 02 \ for \ K_{MAC}$

Complexity Analysis of Key Space

Special (public) parameters for issuing passports:

The Netherlands

Start: August 26, 2006

Validity: 5 years

Working days T_{work}

until June 1, 2007 196

Passport owners: approx. 9 million

Passports issued

per working day: approx. 7000

Numbering: fixed `N´, 1 alphanumeric digit,

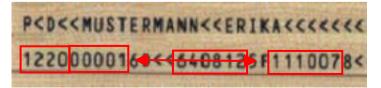
6 numeric digits, 1 digit checksum

<u>Germany</u>

November 1, 2005

10 years

413


approx. 20 million

approx. 8000

4 numeric digits for local authority,

5 numeric digits serial number

Complexity Analysis of Key Space

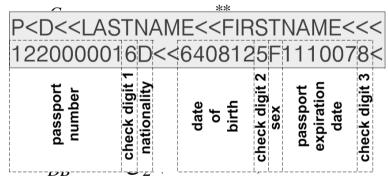
Adversary's knowledge on the system:

- 1. public knowledge
- 2. stochastic dependency between passport number and expiry date*
- 3. complete database of BAC keys

Knowledge on the passport holder:

- 1. issuing state
- 2. photo of passport holder
- 3. date of birth
- 4. site of eavesdropping (only relevant for Germany)

Complexity Analysis of Key Space


Example Scenario:

• public knowledge, stochastic dependency between *passport number* and *expiry date**, age of passport holder with margin of 10 years, and issuing state known

Entropy for Germany

$$H^{G} = H_{PN}^{G} + H_{DB}^{G} + H_{DE}^{G}$$

$$H_{DE}^{G} \approx \delta$$
 $H^{G} \approx 33.3 + \delta$

Entropy for the Netherlands

$$H^{NL} = H_{PN}^{NL} + H_{DB}^{NL} + H_{DE}^{NL}$$

$$H_{PN}^{NL} = \log_2(T_{work}^{**} \times 7000) \approx 20.4$$

$$H_{DB}^{NL} \approx \log_2(10 \times 365) \approx 11.8$$

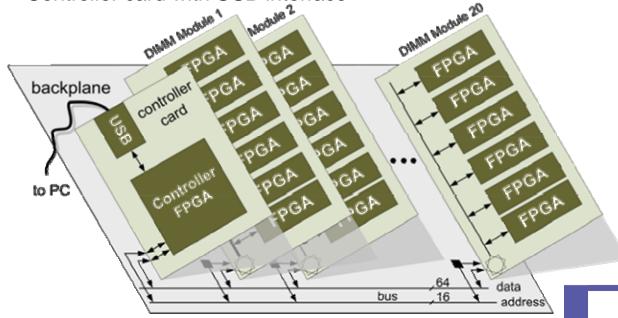
$$H_{DE}^{NL} = \delta$$

$$H^{NL} \approx 32.2 + \delta$$

- *) in Germany: for each local authority
- **) working days since start of system until June 1, 2007

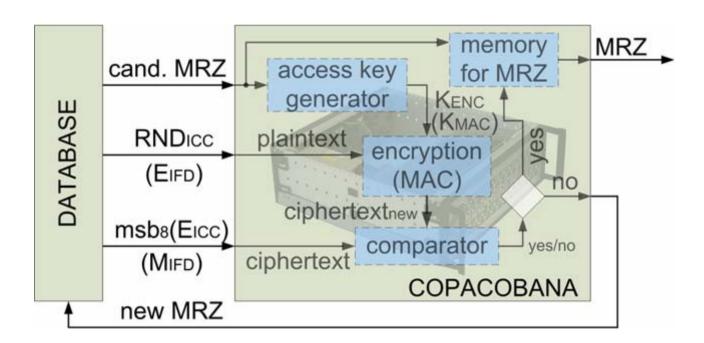
Major Flaw in the BAC Scheme

Low entropy of the BAC keys in present numbering schemes:


- 1. key space of the passport number:
 fixed digits, check digit, mainly numeric characters
 → could be nine alphanumeric characters
- stochastic dependency between passport number and the expiry date
 - → don't assign passport numbers serially
- 3. dependency on publicly available data (date of birth)
 - → don't use publicly available data

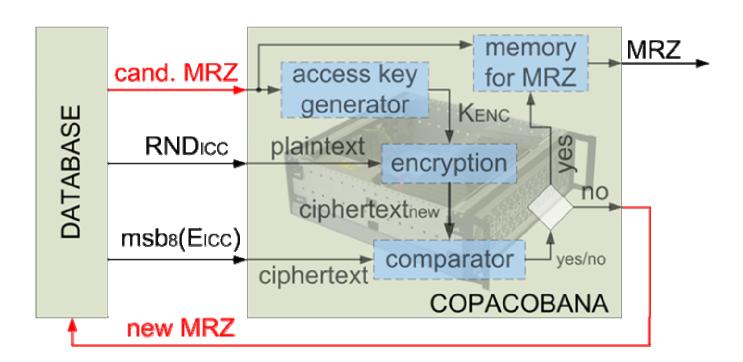
COPACOBANA: A Brief Overview

- Cost-Optimized PArallel COde Breaker
- an FPGA-based machine for DES cracking
- Parallel architecture built out of 120 Xilinx Spartan3 XC3S1000 FPGAs
- Modular design:
 - Backplane with FPGA modules (each with 6 low-cost FPGAs)
 - Controller card with USB interface



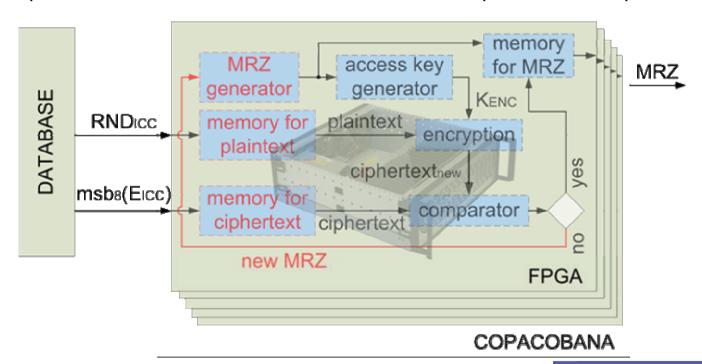
The First Thought about the Design

- Two approaches for key search:
 - 1. $msb_8(E_{ICC}) = E_{K-ENC}(RND_{ICC})$
 - 2. $MAC_{K-MAC}(E_{IFD}) = M_{IFD}$

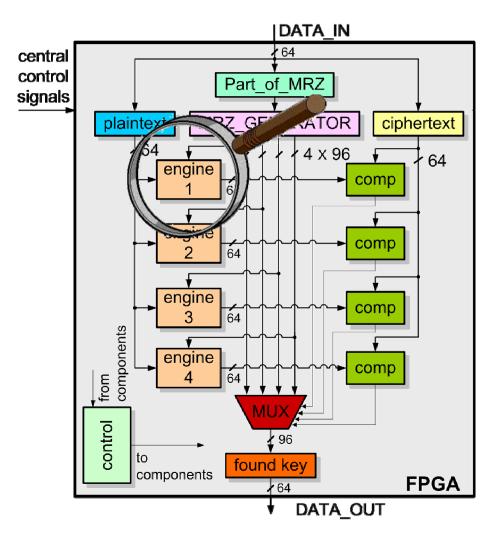


Problems and Solutions

• **Problem**: The bottleneck of the architecture of the COPACOBANA is the communication via the buses and to the Host PC.



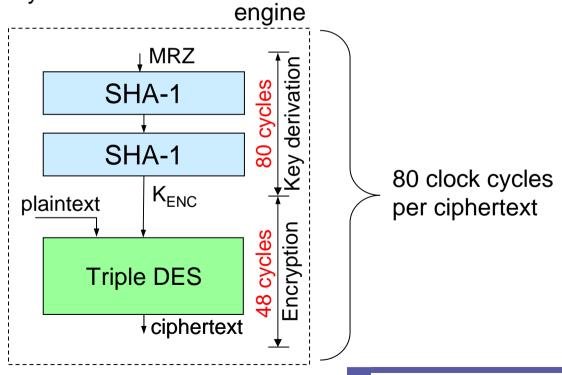
Problems and Solutions


- Problem: The bottleneck of the architecture of the COPACOBANA is the communication via the buses and to the Host PC
- Solution:
 - Every FPGA possesses a MRZ generator to support the key derivation
 - Special memories will be established to store the plaintext and ciphertext

Layout of a single FPGA

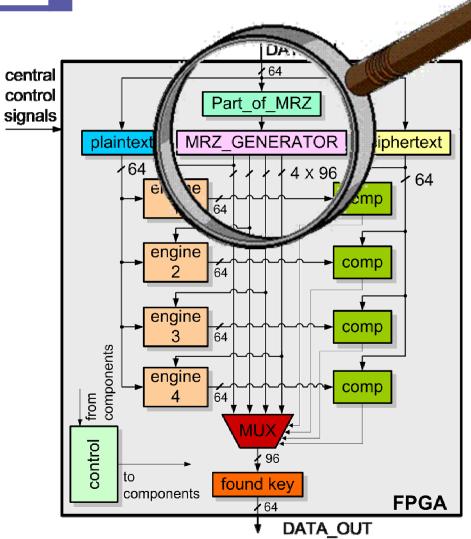
Part_of_MRZ:

- -fixed for every FPGA, e.g., expiry day or birthday.
- Plaintext: RND_{ICC}
- **Ciphertext**: msb₈(E_{ICC})
- MRZ_Generator:
 - -producing 4 MRZs/clock
- Engine_i:
 - -Deriving K_{ENC}
 - Encrypting the plaintext into ciphertext
- Comp:
 - -Ciphertext_{new} = Ciphertext ?



Design of one engine

Solution:


- → Pipelined SHA-1: Needs 80 clock cycles per key candidate (SHA-1 is bottleneck)
- → 3DES needs 48 clock cycles

Layout of a single FPGA

Part_of_MRZ:

-fixed for every FPGA, e.g., expiry day or birthday.

Plaintext: RND_{ICC}

Ciphertext: msb₈(E_{ICC})

MRZ_Generator:

-producing 4 MRZs/clock

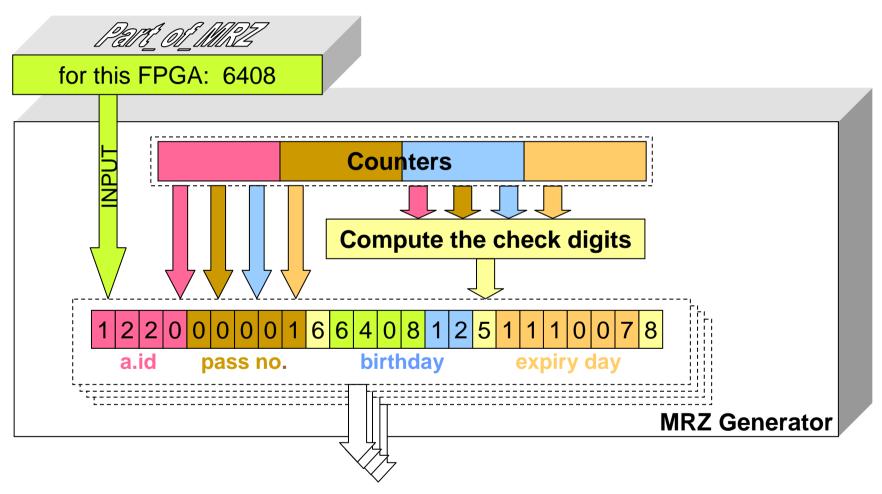
• Engine_i:

- -Deriving K_{ENC}
- Encrypting the plaintext into ciphertext
- Comp:

-Ciphertext_{new} = Ciphertext ?

Design of the MRZ Generator

- They are the only components depending on the concrete attack scenario (adversary, knowledge about passport holder,...)
- Part_of_MRZ: fixed for every FPGA; but how?
 - One Idea: Age estimate: 10 years = 120 months = 120 FPGAs
 - → Fixed part of MRZ is year and month of birth.


MRZ Generator

- Input: Part_of_MRZ
- Output: Subspace of MRZ information

Implementation for Scenarios

- size of Part_of_MRZ field depends on application scenario
- as does the MRZ Generator

Practical Results

Efficiency of the implementation

Clock rate	40 MHz	
Speed of the	1 FPGA	2 Mio. Keys/second ≈ 2 ^{20.93} Keys/second
Key search	120 FPGAs	240 Mio. Keys/second ≈ 2 ^{27.84} Keys/second

		Germany	The Netherlands
Scenario:	Total amount of MRZ candidates	1.06 *10 ¹⁰	4.9 *10 ⁹
	Average time to find the MRZ	22 second	10.3 second

• public knowledge, stochastic dependency between *passport number* and *expiry date*, age of passport holder with margin of 10 years, and issuing state known

Conclusion

- Scenario for eavesdropping attacking BAC keys introduced
- Two approaches for two-way and one-way communication
- Complexity Analysis of BAC key space
 - → Entropy of present schemes is too low
- Fast hardware implementation of the BAC key search
- Throughput: 2^{27.8} = 240 million BAC keys per second on COPACOBANA
- 2³⁵ key candidates require 2 minutes and 23 seconds
- Key search machines are a real threat for privacy and security of electronic passport holders.

Thanks for your attention!

{yliu,tkasper,lemke,cpaar}@crypto.rub.de

presentation at SHARCS 2007 Vienna, Austria