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Objectives

• Optimize Trial Division algorithm for use in the 
hardware implementations of the Number Field 
Sieve and/or Quadratic Sieve

• Develop efficient FPGA architecture optimized 
for maximum throughput

• Compare performance of FPGA implementation 
with software implementation
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Trial Division in 
Number Field Sieve (NFS)
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Trial Division

Given:

Inputs:

Variables:

1. Integers N1, N2, N3, ....   each of the size of k-bits

Constants:

2. Factor base =

set of all primes smaller smaller than a certain bound B

= { p1=2, p2=3, p3=5, ... , pt ≤ B }

Parameters of interest:

k = 216, 350, 512

B = 100 000



Trial Division (cont)
Outputs:
For each integer Ni:
A list of primes from the factor base that divides Ni, 
the number of times each prime divides Ni, and
the remainder Mi after factoring out small primes

For example if
Ni = p1

e1 · p2
e2 · p3

e3 · Mi, 

where Mi is not divisible by any prime belonging to 
a factor base, then
the output is

{p1, e1}, {p2, e2}, {p3, e3}, {Mi}



Classical Division Algorithms

• Division is typically performed as a series of 
subtract and compare operations

• Sequential divider 
– uses shift/subtract division algorithm 

– requires one clock cycle per quotient bit

– small but slow

• Array divider 
– pipelined version of sequential divider

– circuit area quadratically dependent on dividend size

– fast but large



Design Decisions



Trial Division by Small Primes

• Large dividend (216, 350, or 512 bits)

• Many small divisors

– Divisor 17 bits

– 9592 divisors per dividend

• Relatively few small primes divide a randomly 
chosen large integer N



Expected Number of Small Prime 
Factors for 512-bit Number

• Developed software program 
to determine expected number 
of small prime factors

• Demonstrated that about 
99.9% of random numbers 
have 9 or fewer small prime 
factors

• Independently verified results 
theoretically (details in paper)

c – number of prime factors < B
qc – fraction of numbers with c   
prime factors

c Calculated q
c

Experimental q
c

0 0.048753 0.048750

1 0.169584 0.168777

2 0.261423 0.261627

3 0.244033 0.243688

4 0.157985 0.157970

5 0.076659 0.077459

6 0.029327 0.029584

7 0.009167 0.009327

8 0.002404 0.002396

9 0.000540 0.000510

10 0.000105 0.000104

11 0.000018 0.000016

12 0.000003 0.000000

> 12 0.000000 0.000000
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Design Decisions

• Partition circuit into two main components
– Fast pipelined array divider to determine divisibility
– Small sequential divider to process numbers found to be divisible

• Array divider determines divisibility of each large integer 
by 9592 small primes
– One result obtained every clock cycle
– Circuit area scales linearly with dividend size

• Sequential divider processes numbers when array 
divider finds a factor
– Small circuit area
– Execution time proportional to dividend size
– Processes relatively few numbers in parallel with further 
operation of array divider



Hardware Architecture



Circuit Algorithm



Circuit Block Diagram
Input Shift Register

Dividend Register

Comparator
FIFO

Queue

Dividend 

Register
Divisor 

Register

Comparator Counter

Divisor

Remainder

Quotient

Index

16

k

18

18

18

18

18

k

14

4

k

k

k

Number N (in 16-bit words) 

Factor p i Exponent e i

Remainder

Array Divider

ROM

Sequential

Divider

Divisor

18

Load

Factor M 

output shift register

Factor M 

(in 16-bit words)



Division Example

11100110110

100110

110

0100110

110

100110

110

100110

110

1110

110

010

110

010

6 230

38

18

50

48

2

230 / 6 = 38 remainder 2



Given:       N (k-bit integer), -p (where p is a small prime, p < 217)
Compute:  s = N mod p

s(1) = 000…0Nk-1      ; 17 zeros followed by Nk-1
for  i = 1 to k-1 do
s(i) = s(i) || Nk-(i+1)    ; equivalent to  s

(i) = 2*s(i) | Nk-(i+1) 
if (s(i) + (-p(i)) > 0 then
s(i+1) = s(i) + (-p(i))
else
s(i+1) = s(i)

end do
s = s(k)

||  denotes concatenation,    |  denotes bitwise or

Array Divider Algorithm



. . . . . . .

kN

-p(1) s(1) Nk-2
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Array Divider Block Diagram



Partial Remainder 
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Sequential Divider Algorithm
Given:       N (k-bit integer), -p (where p is a small prime, p<217)
Compute:  q = N / p ;   s = N mod p

s(0) = 000…0 || N ; 18 zeros followed by N
for  i = 1 to k do
if (2⋅s(i-1) + 2k ⋅(-p) > 0) then
qk-i = 1
s(i) = 2⋅s(i-1) + 2k⋅(-p) 
else
qk-i = 0
s(i) = 2⋅s(i-1)

end do
q = qk-1..0
s = s(k)k+16..k

||  denotes concatenation
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Synthesis Results



Circuit Area CLB Slices

Dividend Total Array Divider

512 bits 16,922 15,323

350 bits 11,614 10,462

216 bits 7,216 6,441
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Circuit Minimum Clock Period
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Comparison with Software



Circuit Throughput
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Hardware Speedup vs. Software



Approximate Cost of FPGA and CPU
in Quantities of 100

• Spartan 3 XCS1500, XCS2000: $50

• Virtex 4 XC4VLX25: $200

• Virtex 4 XC4VLX40: $450

• Intel Xeon 2.8 GHz: $200

Sources: www.em.avnet.com

www.nuhorizons.com

www.compuvest.com



Performance / Cost Gain 
Hardware vs. Software
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Conclusions

• Developed novel hardware architecture for trial division with 
applications in NFS and QS

• Our architecture relies on parallel execution of two units

– Array divider: optimized for maximum throughput,

checking divisibility by small primes

– Sequential divider: optimized for minimum area,

performing the actual divisions

• Spartan 3 and Virtex 4 FPGAs implementations outperform 
Intel Xeon 2.8 GHz / GMP library implementations by a factor 

– 10 to 50 in terms of performance

– 20 to 80 in terms of performance to cost ratio



Questions??
?

Thank you!


