
FPGA Implementation of High Throughput
Circuit for Trial Division by Small Primes

Gabriel Southern

Chris Mason

Lalitha Chikkam

Patrick Baier

Kris Gaj

George Mason University

Co-authors

Kris GajLalitha Chikkam Patrick BaierChris Mason

Objectives

• Optimize Trial Division algorithm for use in the
hardware implementations of the Number Field
Sieve and/or Quadratic Sieve

• Develop efficient FPGA architecture optimized
for maximum throughput

• Compare performance of FPGA implementation
with software implementation

Outline

• Trial Division in Number Field Sieve (NFS)

• Design Decision

• Hardware Architecture

• Synthesis results

• Comparison with software implementation

• Conclusion

Trial Division in
Number Field Sieve (NFS)

Factoring 1024-bit RSA keys

using Number Field Sieve (NFS)

Polynomial Selection

Linear Algebra

Square Root

Relation Collection

Sieving

Cofactoring
216 bit

numbers

& 350 bit Trial division

ECM, p-1 method, rho method

Trial Division

Given:

Inputs:

Variables:

1. Integers N1, N2, N3, each of the size of k-bits

Constants:

2. Factor base =

set of all primes smaller smaller than a certain bound B

= { p1=2, p2=3, p3=5, ... , pt ≤ B }

Parameters of interest:

k = 216, 350, 512

B = 100 000

Trial Division (cont)
Outputs:
For each integer Ni:
A list of primes from the factor base that divides Ni,
the number of times each prime divides Ni, and
the remainder Mi after factoring out small primes

For example if
Ni = p1

e1 · p2
e2 · p3

e3 · Mi,

where Mi is not divisible by any prime belonging to
a factor base, then
the output is

{p1, e1}, {p2, e2}, {p3, e3}, {Mi}

Classical Division Algorithms

• Division is typically performed as a series of
subtract and compare operations

• Sequential divider
– uses shift/subtract division algorithm

– requires one clock cycle per quotient bit

– small but slow

• Array divider
– pipelined version of sequential divider

– circuit area quadratically dependent on dividend size

– fast but large

Design Decisions

Trial Division by Small Primes

• Large dividend (216, 350, or 512 bits)

• Many small divisors

– Divisor 17 bits

– 9592 divisors per dividend

• Relatively few small primes divide a randomly
chosen large integer N

Expected Number of Small Prime
Factors for 512-bit Number

• Developed software program
to determine expected number
of small prime factors

• Demonstrated that about
99.9% of random numbers
have 9 or fewer small prime
factors

• Independently verified results
theoretically (details in paper)

c – number of prime factors < B
qc – fraction of numbers with c
prime factors

c Calculated q
c

Experimental q
c

0 0.048753 0.048750

1 0.169584 0.168777

2 0.261423 0.261627

3 0.244033 0.243688

4 0.157985 0.157970

5 0.076659 0.077459

6 0.029327 0.029584

7 0.009167 0.009327

8 0.002404 0.002396

9 0.000540 0.000510

10 0.000105 0.000104

11 0.000018 0.000016

12 0.000003 0.000000

> 12 0.000000 0.000000

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 1 2 3 4 5 6 7 8 9 10 11 12 > 12

Number of Small Primes

F
ra

c
ti
o
n
 o

f
to

ta
l
la

rg
e
 n

u
m

b
e
rs

Theoretical

Experimental

Expected Number of Small Prime Factors
(< 100,000) for 512-bit Number

Design Decisions

• Partition circuit into two main components
– Fast pipelined array divider to determine divisibility
– Small sequential divider to process numbers found to be divisible

• Array divider determines divisibility of each large integer
by 9592 small primes
– One result obtained every clock cycle
– Circuit area scales linearly with dividend size

• Sequential divider processes numbers when array
divider finds a factor
– Small circuit area
– Execution time proportional to dividend size
– Processes relatively few numbers in parallel with further
operation of array divider

Hardware Architecture

Circuit Algorithm

Circuit Block Diagram
Input Shift Register

Dividend Register

Comparator
FIFO

Queue

Dividend

Register
Divisor

Register

Comparator Counter

Divisor

Remainder

Quotient

Index

16

k

18

18

18

18

18

k

14

4

k

k

k

Number N (in 16-bit words)

Factor p i Exponent e i

Remainder

Array Divider

ROM

Sequential

Divider

Divisor

18

Load

Factor M

output shift register

Factor M

(in 16-bit words)

Division Example

11100110110

100110

110

0100110

110

100110

110

100110

110

1110

110

010

110

010

6 230

38

18

50

48

2

230 / 6 = 38 remainder 2

Given: N (k-bit integer), -p (where p is a small prime, p < 217)
Compute: s = N mod p

s(1) = 000…0Nk-1 ; 17 zeros followed by Nk-1
for i = 1 to k-1 do
s(i) = s(i) || Nk-(i+1) ; equivalent to s

(i) = 2*s(i) | Nk-(i+1)
if (s(i) + (-p(i)) > 0 then
s(i+1) = s(i) + (-p(i))
else
s(i+1) = s(i)

end do
s = s(k)

|| denotes concatenation, | denotes bitwise or

Array Divider Algorithm

.

kN

-p(1) s(1) Nk-2

18-p

CS 1

s(2) Nk-3-p(2)
1718

CS 2

s(3) Nk-4-p(3)
1718

CS 3

s(k-1) N0-p(k-1)
1718

CS k-1

s = s(k)-d = -p(k)
1718

s(k-2) N1-p(k-2)
1718

CS k-2

s(4)-p(4)
1718

Array Divider Block Diagram

Partial Remainder
Register

Divisor
Register

Adder

-p(i) s(i) Nk-(i+1)

18 17

18 17

-p(i+1) s(i+1)

17

18

18

17

z17..0

z16..0

x17..0

x17 x16..0

MUX

CS #i

Controlled Subtractor Cell

Sequential Divider Algorithm
Given: N (k-bit integer), -p (where p is a small prime, p<217)
Compute: q = N / p ; s = N mod p

s(0) = 000…0 || N ; 18 zeros followed by N
for i = 1 to k do
if (2⋅s(i-1) + 2k ⋅(-p) > 0) then
qk-i = 1
s(i) = 2⋅s(i-1) + 2k⋅(-p)
else
qk-i = 0
s(i) = 2⋅s(i-1)

end do
q = qk-1..0
s = s(k)k+16..k

|| denotes concatenation

Partial Remainder
Register (k+17..k)

Divisor
Register

Adder

-p
y0

17 18

17

17

17

17

17

MUX
0 1

Quotient
Register

k

Partial Remainder
Register (k-1..1)

Shift

Shift

Nk-2..0

MUX0 1

y17..1y17..0
18

00…Nk-1

17

q

M

S

B

17

1

17s

17

Synthesis Results

Circuit Area CLB Slices

Dividend Total Array Divider

512 bits 16,922 15,323

350 bits 11,614 10,462

216 bits 7,216 6,441

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

512 bits 350 bits 216 bits

C
L
B

 S
li
c
e
s

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

512 bits 350 bits 216 bits

C
L
B

 S
li
c
e
s

Spartan-3

Dividend Total Array Divider

512 bits 16,895 15,323

350 bits 11,578 10,462

216 bits 7,182 6,441

Virtex-4

Circuit Minimum Clock Period

0

2

4

6

8

10

12

18-bit

adder/mux

512-bit circuit 350-bit circuit 216-bit circuit

M
in

 C
lo

c
k
 P

e
ri

o
d
 (
n
s
)

Spartan-3

Virtex-4

Comparison with Software

Circuit Throughput

0

10,000

20,000

30,000

40,000

50,000

60,000

Spartan-3

Optimal

Spartan-3

Actual

Virtex-4

Optimal

Virtex-4

Actual

Pentium 4

T
h
ro

u
g
h
p
u
t
(n

u
m

/s
e
c
)

512 bits

350 bits

216 bits

Hardware Speedup vs. Software

Approximate Cost of FPGA and CPU
in Quantities of 100

• Spartan 3 XCS1500, XCS2000: $50

• Virtex 4 XC4VLX25: $200

• Virtex 4 XC4VLX40: $450

• Intel Xeon 2.8 GHz: $200

Sources: www.em.avnet.com

www.nuhorizons.com

www.compuvest.com

Performance / Cost Gain
Hardware vs. Software

275642103216 bits

183762151350 bits

264983203512 bits

Virtex-4
Actual

Virtex-4
Optimal

Spartan-3
Actual

Spartan-3
OptimalDividend

Conclusions

• Developed novel hardware architecture for trial division with
applications in NFS and QS

• Our architecture relies on parallel execution of two units

– Array divider: optimized for maximum throughput,

checking divisibility by small primes

– Sequential divider: optimized for minimum area,

performing the actual divisions

• Spartan 3 and Virtex 4 FPGAs implementations outperform
Intel Xeon 2.8 GHz / GMP library implementations by a factor

– 10 to 50 in terms of performance

– 20 to 80 in terms of performance to cost ratio

Questions??
?

Thank you!

