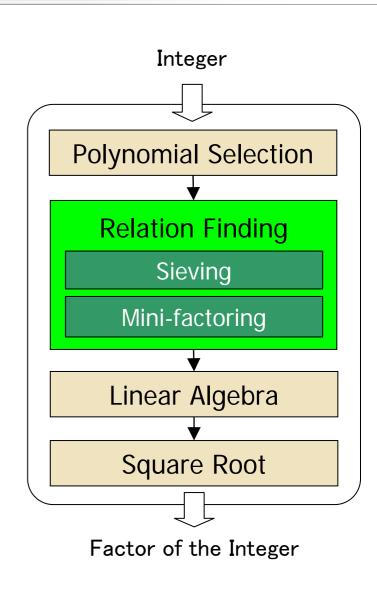
An Evaluation of the Sieving Device YASD for 1024-bit Integers*

SHARCS 2006, Cologne, Germany April 4, 2006

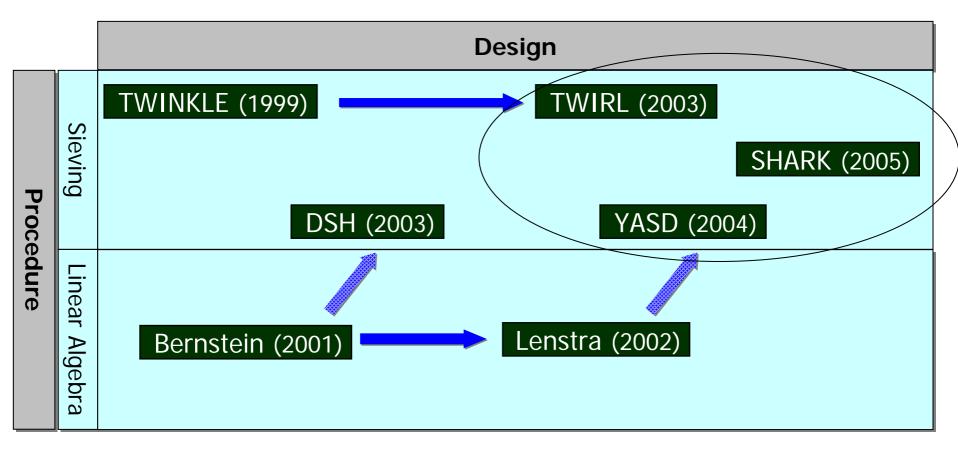
Naoyuki Hirota (UEC), **OTetsuya Izu (FUJITSU),** Noboru Kunihiro (UEC), Kazuo Ohta (UEC)

* A part of this work is financially supported by a consignment research from the National Institute of Information and Communications Technology (NICT), Japan.

Integer Factoring in Security


- Integer factoring is hard in theory and practice
 - This property assures the RSA's security
 - The best factoring algorithm: Number Field Sieve method (NFS)
 - World record: "RSA200", a 663-bit integer (May 2005)
 - Since NFS is sub-exponential time algorithm, factoring 1024-bit integer seems far away...
 - In some standards, it is strongly believed that factoring 1024 bit integers, RSA's default key size, will be infeasible at least in next 10 years

Number Field Sieve Method (NFS)



- 4 major steps in NFS
 - Polynomial Selection
 - Relation Finding
 - Sieving
 - Mini-factoring
 - Linear Algebra
 - Square Root
- Time-consuming Steps
 - Relation Finding
 - Sieving
 - Linear Algebra

Dedicated Factoring Hardware

Comparison

	1024-bit	768-bit				
TWIRL	Size: $15960 \text{mm}^2 \times 8 + 66000 \text{mm}^2$	Size: 1330mm ² +4430mm ²				
	Time: 194 years (by 1 set)	Time: 2.3 years (by 1 set)				
	Cost: 15000 USD/set	Cost: 750 USD/set				
	Frequency: 1 GHz	Frequency: 1 GHz				
YASD	Size: 42200mm ²	Size: 2400mm ²				
	Time: 10301 years (by 1 set)	Time: 34.5 years (by 1 set)				
	Cost: 3200 USD/set	Cost: 250 USD/set				
	Frequency: 500 MHz	Frequency: 500 MHz				
SHARK	Size: 1/4 wafer + DRAM	Rough Estimation!				
	Time: 2300 years (by 1 set)	Especially, we did not				
	Cost: 40000 USD/set	consider wiring problem and				
	Frequency: 1 GHz	mini-factoring problem				

Assumed 130 nm technology, full wafers with 300 mm diameter. Cost estimation excludes NRE, defects and power supply.

Contents

- Introduction
- Description of YASD
- Time Parameterization
- Area Parameterization
- Formulas and Optimization
 - Generalized YASD
 - YASD for 768-bit Integers (YASD768)
 - YASD for 1024-bit Integers (YASD1024)
- Concluding Remarks

Contents

- Introduction
- Description of YASD
- Time Parameterization
- Area Parameterization
- Formulas and Optimizations
 - Generalized YASD
 - YASD for 768-bit Integers (YASD768)
 - YASD for 1024-bit Integers (YASD1024)
- Concluding Remarks

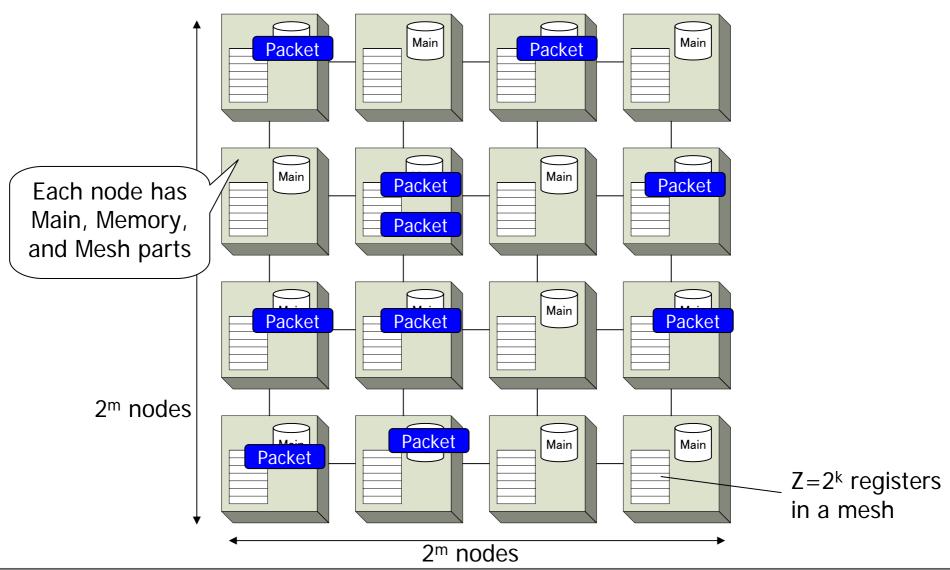
YASD (Yet Another Sieving Device)

- Dedicated Sieving Device
 - Proposed by Willi Geiselmann and Rainer Steinwandt in CT-RSA 2004
 - No implementational results have been reported
- Idea : Use of the Clockwise Routing Algorithm
 - A mesh of processing nodes
 - Regular structure
 - Assumed 130 nm technology, wafer with 300 mm diameter and 500 MHz frequency
 - 768-bit integer can be sieved in 600 days with 21 YASDs (here manufacturing cost is assumed to be 5000 USD)

What Does the Sieving Do?

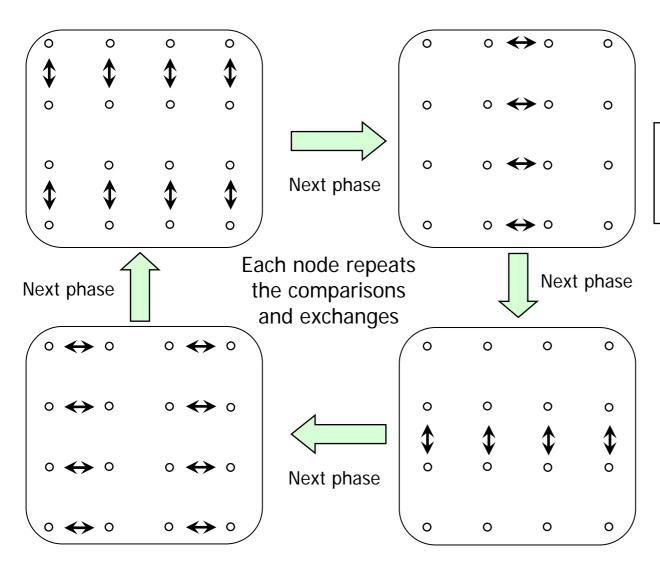
- Aim of the Sieving
 - To send all packets generated in the factor base to their target memory storage

Packet Generator


Memory Storage Packet control is crutial... **Factor Base** (FB) **Packet Packet**

SHARCS 2006, Cologne, Germany

Mesh Structure



YASD distributedly holds FB and memory storage in a mesh

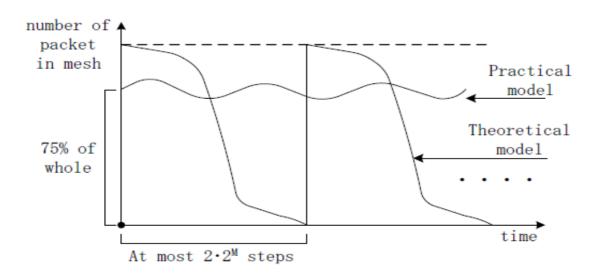
Clockwise Transposition Routing

The routing terminates in at most 2M steps experimentally

Evaluation of YASD768

- Optimized Parameters
 - k=24, m=8
- Chip Size
 - $49 \text{mm} \times 49 \text{mm} = 2400 \text{ mm}^2$
- Time
 - 1 subinterval is sieved in 40,000 clocks
 - All area is sieved in 12,500 days/set
 - Since 21 chips are obtained from 1 wafer, about 600 days are required for the sieving
- Assumptions
 - 130 nm technology
 - Frequency 500 MHz

Contents

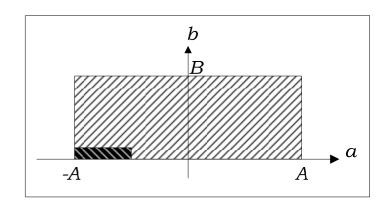


- Introduction
- Description of YASD
- **■** Time Parameterization
- Area Parameterization
- Formulas and Optimizations
 - Generalized YASD
 - YASD for 768-bit Integers (YASD768)
 - YASD for 1024-bit Integers (YASD1024)
- Concluding Remarks

Required Time for Routing

- In Theory
 - Routing time in a $2^m \times 2^m$ mesh is at most 2×2^m
- In YASD
 - Above estimation cannot be applied directly, since packets are always sent from Main parts and to Memory parts
 - Thus we use a simplified model

Time Parameterizations



Time for Routing

$$Time_{routing} = \frac{\sum_{2^{k-2m}$$

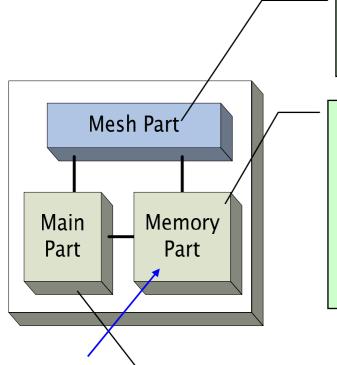
Time for Sieving

$$Time^{(N)} = \frac{Time_{routing}^{(N)}}{500 \times 10^6} \times \frac{2Ha \times Hb}{2^k} \times \frac{3}{4} \times \frac{1}{365 \times 24 \times 3600} \text{ [years]}$$

Contents

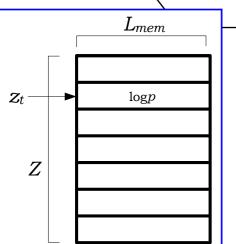
- Introduction
- Description of YASD
- Time Parameterization
- Area Parameterization
- Formulas and Optimizations
 - Generalized YASD
 - YASD for 768-bit Integers (YASD768)
 - YASD for 1024-bit Integers (YASD1024)
- Concluding Remarks

Details of YASD768

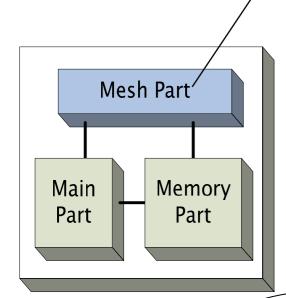

	# of Tr	# of DRAM
Main Part	2750	55000
Memory Part	1250	11500
Mesh Part	1100	
Total (in 1 node)	5100	66500

Tr : 2.8 [μ m²] DRAM: 0.3 [μ m²]

■ Since we have 256 × 256 nodes $(5100 \times 2.8 + 66500 \times 0.3) \times 256 \times 256 = 2243.3 \text{ mm}^2$ = 2400


Roles and Logics

[Role] Comparing and exchanging packets [Logic] Register, comparator


[Role] Adding log values to corresponding registers, storing sums and footprints [Logic] Adder, buffers between Memory-Mesh Parts, circuits for final output, memory

[Role] Storing factor base, generating packets, sending packets to Mesh Parts[Logic] Memory, adder, buffers between Main-Mesh Parts, circuits for initialization

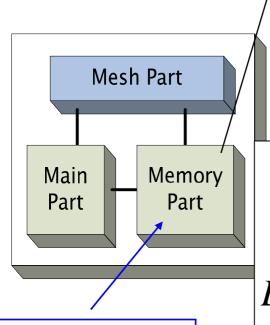
Mesh Part

[Role] Comparing and exchanging packets

$$Tr_{mesh} = 2PACH_{dff} + M \cdot H_{comp}$$

PAC: bit length of a packet

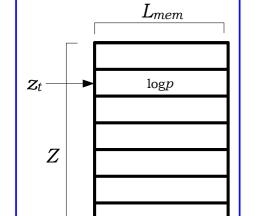
 H_{dff} : #Tr of 1-bit D-F/F


M: bit length of coordinate

values for repserenting a node

 H_{comp} : #Tr for 1-bit comparator

Memory Part



[Role] Adding log values to corresponding registers, storing sums and footprints [Logic] Adder, buffer between Memory-Mesh Parts, circuit for final output, memory

$$Tr_{mem} = \frac{H_{add} \times L_{mem} + 2(PAC - 2M - 2)}{\times H_{latch} + 500}$$

$$DRAM_{mem} = 2Z \cdot L_{mem} + \frac{F}{2^{2M}} L_{\text{footprint}} \times 1.3$$

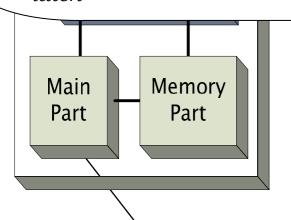
 H_{add} : #Tr for 1-bit adder

 2^m : mesh size

PAC: bit length of a packet

 H_{latch} : #Tr for 1-bit latch

 z_t : target register


: #Tr for 1-bit adder

: bit length of a max prime

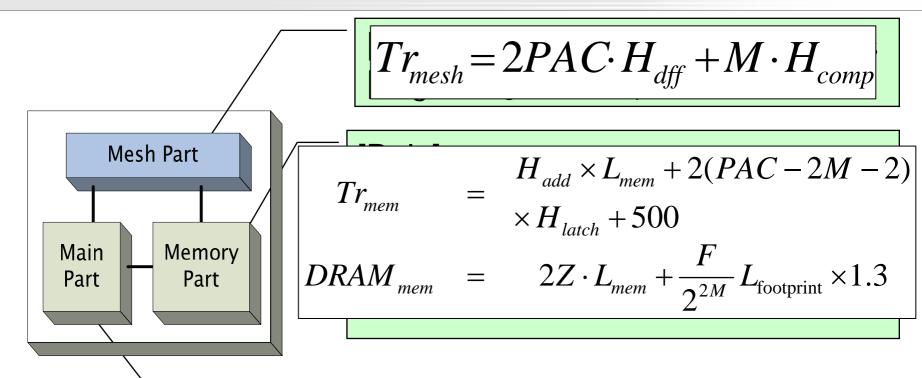
: length of a subinterval

PAC: bit length of a packet

 H_{latch} : #Tr of 1-bit latch

$$Tr_{main} = H_{add} \times \max(L_p, k) +$$

$$2PAC \times H_{latch} + 1000$$


$$DRAM_{main} = L_{fb} \times \frac{N}{2^{2M}} \times 1$$

[Role] Storing factor base, generating packets, sending packets to Mesh Parts

[Logic] Memory, adder, buffers between Main-Mesh Parts, circuits for initialization

DRAM

Contents

- Introduction
- Description of YASD
- Parametarization
- Formulas and Optimizations
 - Generalized YASD
 - YASD for 768-bit Integers (YASD768)
 - YASD for 1024-bit Integers (YASD1024)
- Concluding Remarks

Formulas for Generalized YASD

$$Area^{(N)} = Tr_{main} + Tr_{mem} + Tr_{mesh} + DRAM_{main} + DRAM_{mem}$$

$$= \{ (190.4m + 201.6k + 89.6L_{log} + 112L_{mem} + 7320) \times 2^{2m} + (0.33nL_{fb} + 0.3 \times 2^{k+1}L_{mem} + (1.3k + 15.6)F) [\mu m^{2}] \}$$

$$Time_{routing}^{(N)} = \left(\sum_{p>2^{k-2m}}^{Ba} \frac{2^{k}}{p} + \sum_{p>2^{k-2m}}^{Br} \frac{2^{k}}{p} \right) \times \frac{0.24}{2^{m}}$$

$$Time^{(N)} = \frac{Ha \times Hb}{1.83 \times 10^{17}} \times Time_{routing}^{(N)}$$

Circuit Parameters

		768-bit	1024-bit			
L_p	Bit length of max prime	30 32				
L_{log}	Bit length of int(log(p))	6 8				
L_{mem}	Bit length of Σ int(log(p))	10	11			
n	# of primes	7.97×10^7	1.32×10^9			
F	# of footprints	0.496×2^{k}	0.818×2^k			
L_{fb}	average bit length of a prime	38 42				
H_{add}	1-bit adder	40 Tr				
H_{dff}	1-bit D-F/F	8 Tr				
H_{latch}	1-bit latch	4 Tr				
H_{comp}	1-bit comparator	20 Tr				

Sieving Parameters

	768-bit	1024-bit
B_r	108	3.5×10^9
B_a	10 ⁹	2.6×10^{10}
2На	3.4×10^{13}	1.1 × 10 ¹⁵
Hb	8.9 × 10 ⁶	2.7 × 10 ⁸

Formulas for YASD768

$$Area^{(768)}(k,m) = \{(190.4m + 201.6k + 8977.6) \times 2^{2m} + (0.645k + 13.74) \times 2^{k} + 9.99 \times 10^{8} \, [\mu \text{m}^{2}] \}$$

$$Time_{routing}^{(768)}(k,m) = \left(5.94 - 2\log\log 2^{k-2m}\right) \times \frac{0.24}{2^{m}}$$

$$Time^{(768)}(k,m) = 3453 \times \frac{5.94 - 2\log\log 2^{k-2m}}{2^{m}} \text{[years]}$$

Optimized Parameters (w.r.t AT-product): k=24, m=8

$$Area^{(768)}(24,8) = 2500 \text{ [mm}^2\text{]}$$

 $Time^{(768)}(24,8) = 34 \text{ [years]}$

AT Products of YASD768

Table 7. Area and time values for YASD768

		m = 5	6	7	8	9	10	11	12
	Area (cm ²)	11	11	13			169		
k = 21	Time (year)				47	30	23		
	AT product	2169	1371	971	942	1500	3804		
	Area (cm ²)	11	12	14	21	51	172		
22	Time (year)	184	112	68	42	26	18		
	AT product	2078	1312	921	873	1337	3062		
	Area (cm ²)	13		15	22	53	175	671	
23	Time (year)	167	101	61	38	23	15	11	
	AT product	2087	1316	912	837	1225	2643	7552	
	Area (cm ²)	15	16	17			180	682	
24	Time (year)	151	92	56	34	21	13	9	
	AT product		1425	969	846	1159	2364	6081	
	Area (cm ²)			23	30	61	187	696	2755
25	Time (year)	136	83	51	31	19	12	8	6
	AT product	2735	1718	1141	928	1149	2178	5251	15499
26	Area (cm ²)	31			41	72	200	715	2799
	Time (year)	122	75	46	28	17	10	7	4
	AT product	3727	2340	1517	1137	1225	2079	4700	12476

Formulas for YASD1024

$$Area^{(1024)}(k,m) = \{(190.4m + 201.6k + 9268.8) \times 2^{2m} + (1.06k + 19.36) \times 2^{k} + 1.83 \times 10^{10} \, [\mu \text{m}^{2}] \}$$

$$Time_{routing}^{(1024)}(k,m) = (6.27 - 2\log\log 2^{k-2m}) \times \frac{0.24}{2^{m}}$$

$$Time^{(1024)}(k,m) = 339041 \times \frac{6.27 - 2\log\log 2^{k-2m}}{2^{m}} \text{[years]}$$

Optimized Parameters (w.r.t AT-product): k=27,m=10

$$Area^{(1024)}(27,10) = 42200 \text{ [mm}^2\text{]}$$

$$Time^{(1024)}(27,10) = 10301$$
 [years]

AT Products of YASD1024

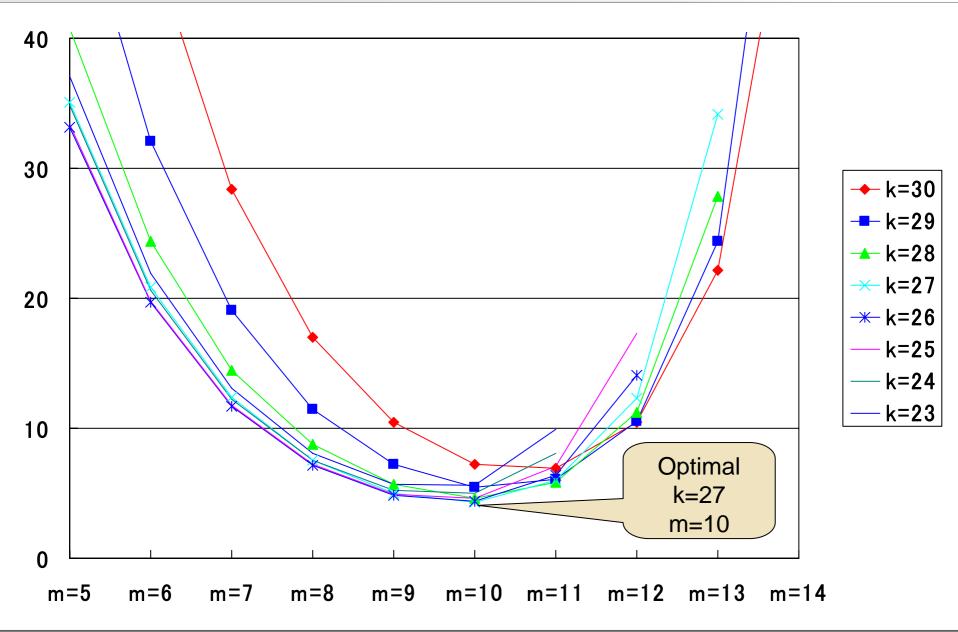


Table 6. Area and time values for YASD1024

		m = 5	6	7	8	9	10	11	12	13	14
	Area (cm ²)	187	187	189	197	228	352	858			
k = 23	Time (year)	198458	116929	69095	41204	25058	15912	11593			
	AT product $(\times 10^6)$	37.08	21.90	13.07	8.11	5.70	5.61	9.94			
	Area (cm ²)	191	191	193	201	232	358	870			
24	Time (year)	182755	107710	63513	37667	22644	14007	9298			
	AT product $(\times 10^6)$	34.85	20.59	12.26	7.56	5.25	5.02	8.09			
	Area (cm ²)	199	199	201	209	240	368	886	2982		
25	Time (year)	168135	99229	58464	34547	20602	12529	7956	5797		
	AT product $(\times 10^6)$	33.38	19.75	11.75	7.21	4.95	4.62	7.05	17.29		
	Area (cm ²)	215	215	217	225	257	387	911	3032		
26	Time (year)	154459	91377	53855	31757	18834	11322	7003	4649		
	AT product $(\times 10^6)$	33.15	19.66	11.69	7.15	4.84	4.38	6.38	14.10		
	Area (cm ²)	248	248	250	258	290	422	952	3099	11782	
27	Time (year)	141613	84068	49615	29232	17274	10301	6265	3978	2898	_
	AT product $(\times 10^6)$	35.06	20.85	12.41	7.54	5.02	4.34	5.97	12.33	34.15	
	Area (cm ²)	315	315	317	325	358	491	1028	3200	11984	
28	Time (year)	129501	77230	45689	26927	15878	9417	5661	3502	2325	_
	AT product $(\times 10^6)$	40.77	24.35	14.50	8.76	5.69	4.62	5.82	11.21	27.86	
	Area (cm ²)	452	453	455	463	496	630	1174	3371	12257	48182
29	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	118044	70807	42034	24807	14616	8637	5151	3132	1989	1449
	AT product $(\times 10^6)$	53.37	32.05	19.11	11.48	7.25	5.44	6.05	10.56	24.38	69.82
30	Area (cm ²)	732	733	735	743	777	913	1463	3685	12672	49003
	(0)	107175	64751	38615	22844	13464	7939	4708	2830	1751	1162
	AT product $(\times 10^6)$	78.51	47.46	28.38	16.98	10.46	7.25	6.89	10.43	22.19	56.96

AT Products of YASD1024

Optimized YASD1024

Optimized Parameters: k=27, m=10

■ Area: 42200 mm²

■ Time: 10301 years (by 1set)

Cost: 3200 USD (excluding NRE, defects and power supply)

Even if we use 600 wafers (like TWIRL1024), more than 17 years are required

■ Since we did not consider the wiring problem and the mini-factoring problem, YASD1024 will require more area and time.

Concluding Remarks

- Established general formulas for generalized YASD
 - Area
 - Time
- Evaluated the performance of YASD1024
 - k=27, m=10
 - Area: 42200 mm²
 - Time: 10301 years (1set)
 - Cost: 3200 USD (excluding NRE, defects and power supply)
- **■** Future Works
 - Consider the wiring problem
 - Application of ECM to the mini-factoring part

THE POSSIBILITIES ARE INFINITE