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ABSTRACT

A novel portable hardware architecture of the Elliptic Curve Method of factoring, designed and optimized for
application in the relation collection step of the Number Field Sieve, is described and analyzed. A comparison
with an earlier proof-of-concept design by Pelzl, Simka, et al. has been performed, and a substantial improvement
has been demonstrated in terms of both the execution time and the area-time product. The ECM architecture has
been ported across five different families of FPGA devices in order to select the family with the best performance
to cost ratio. A timing comparison with the highly optimized software implementation, GMP-ECM, has been
performed. Our results indicate that low-cost families of FPGAs, such as Spartan-3 and Spartan-3E, offer at least
an order of magnitude improvement over the same generation of microprocessors in terms of the performance to
cost ratio.

1. INTRODUCTION

The fastest known method for factoring large integers is the Number Field Sieve (NFS), invented by Pollard
in 1991 [14]. It has since been improved substantially and developed from its initial “special” form (which was
only used to factor numbers close to perfect powers, such as Fermat numbers) to a general purpose factoring
algorithm.

Using the Number Field Sieve, an RSA modulus of 663 bits was successfully factored by Bahr, Boehm, Franke
and Kleinjung in May 2005. The cost of implementing the Number Field Sieve and the time it takes for such an
implementation to factor a b-bit RSA modulus, provide an upper bound on the security of b-bit RSA.

In order to factor a big integer N such as an RSA modulus, NFS requires the factorization of a large number
of moderately sized integers created during run time, perhaps of size 200 bits. Such numbers can be routinely
factored in very little time. However, because an estimated 1010, such factorizations are necessary for NFS to
succeed in factoring a 1024 bit RSA modulus, it is of crucial importance to perform these auxiliary factorizations
as fast and efficiently as possible. Even tiny improvements, once multiplied by 1010 factorizations, would make
a significant difference in how big an RSA modulus we can factor.

We therefore review existing algorithms which can be used to factor medium-size numbers. The only prac-
tically useful algorithms are probabilistic (Monte-Carlo) methods. There is no guarantee that a probabilistic
algorithm will terminate successfully, but the probability of a successful outcome is large enough that the ex-
pected time needed to factor a given number is considerably lower than that of any deterministic algorithm. In
particular, all known deterministic factoring methods have exponential asymptotic run time. In practice, they
are at best used to remove the smallest prime factors from the number to be factored.

Trial division by at most a few hundred small primes with asymptotic run-time O(N1/2+ε) (with ε covering
the cost of integer arithmetic as N increases) may be considered as a first step in factoring random numbers.
The fastest known deterministic factoring method is due to Pollard and Strassen and has an asymptotic run time
O(N1/4+ε), but is not recommended in practical applications because it is easily surpassed by simple probabilistic
methods.
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Three other probabilistic factoring methods are also of exponential run time, but with a much smaller overhead
than their sub-exponential colleagues, so that within a certain range they are efficient factoring tools. These are
Pollard’s p− 1 method, the similar p + 1 method due to Williams, and Pollard’s ρ-method.

Finally, the Elliptic Curve Method (ECM), which is the main subject of this paper, is a sub-exponential
factoring algorithm, with expected run time of O(exp(c

√
log p log log pM(N)) where c > 0, p is a factor we aim

to find, and M(N) denotes the cost of multiplication (mod N). ECM is the best method to perform the kind of
factorizations needed by NFS, for integers in the 200-bit range, with prime factors of up to about 40 bits.

The contribution of this paper is an implementation of the elliptic curve method in hardware (FPGAs). We
describe in detail how to optimize the design and compare our work both to an existing hardware implementation
[16, 18] and a software implementation (GMP-ECM) [7, 15].

2. ELLIPTIC CURVE METHOD

Let K be a field with characteristic different from 2, 3. For example, K = Zq with a prime q > 3, which is a set
of integers {0, 1, . . . , q − 1} with addition and multiplication (mod q). An elliptic curve E over K is defined as
a set of points (X,Y ) ∈ K2 satisfying

Y 2 = X3 + AX + B, where A,B ∈ K, 4A3 + 27B2 6= 0, (1)

together with a special point called “the point at infinity” and denoted O. Two points P = (xP , yP ) and
Q = (xQ, yQ) can be added together to give a third point R = P + Q = (xR, yR), where xR = f1(xP , yP , xQ, yQ)
and yR = f2(xP , yP , xQ, yQ) for some K-rational functions f1 and f2. The point at infinity, O, is an identity
element of this operation, i.e., P + O = P = O + P . Points of the curve E (including the point at infinity)
together with aforementioned addition form a group, which is denoted by E(K). The representation of elliptic
curve points using two coordinates P = (xP , yP ) is called the affine representation.

In order to increase the computational efficiency of point addition, one may prefer the representation of E in
homogeneous (projective) coordinates of E,

Y 2Z = X3 + AXZ2 + BZ3.

With this change, (X, Y, Z) with Z 6= 0 represents (X
Z , Y

Z ) in affine coordinates. If Z = 0, then we have the point
at infinity O which is represented by (0, 1, 0) in projective coordinates.

Montgomery [2] studied elliptic curves of the form, E : by2 = x3 + ax2 + x, to further speed up elliptic curve
operations in software and hardware. This form is obtained by the change of variables, X = 3x+a

3b , Y = y
b , A =

3−a2

3b2 , B = 2a3−9a
27b3 , from Eq. 1. The corresponding expression in projective coordinates is

E : by2z = x3 + ax2z + xz2, (2)

with b(a2 − 4) 6= 0. Using the above form of elliptic curves, Montgomery derived an addition formula for P and
Q which does not need any y-coordinate information, assuming that the difference P −Q is already known.

Let N be a composite integer we want to factor. The ECM Method [2, 5, 7] considers elliptic curves in
Montgomery form, given in Eq. 2, and involves elliptic curve operations (mod N), where the elements in Z are
reduced (mod N). Since N is not a prime, E over ZN is not really an elliptic curve but we can still do point
additions and doublings as if ZN was a field.

2.1. ECM Algorithm

The Elliptic Curve Method (ECM) was originally proposed by Lenstra [4] and subsequently extended by Brent
[5] and Montgomery [2]. The original part of the algorithm proposed by Lenstra is typically referred to as Phase
1 (or Stage 1), and the extension by Brent and Montgomery is called Phase 2 (or Stage 2). The pseudocode of
both phases is given below as Algorithm 1.

Let q be an unknown factor of N . Then the order of the curve E, |E(Zq)|, i.e., the number of points on
the curve E with operations performed (mod q), might be a smooth number that divides k. In that case,
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Algorithm 1 ECM Algorithm
Require: N : composite number to be factored, E: elliptic curve, P0 = (x0, y0, z0) ∈ E(ZN ): initial point, B1:

smoothness bound for Phase 1, B2: smoothness bound for Phase 2, B2 > B1.
Ensure: q: factor of N, 1 < q ≤ N , or FAIL.

Phase 1.

1: k ← ∏
p≤B1

pblogp B1c

2: Q0 ← kP0 //Q0 = (xQ0 , yQ0 , zQ0)//
3: q ← gcd(zQ0 , N)
4: if q > 1 then
5: return q
6: else
7: go to Phase 2
8: end if

Phase 2.

9: d ← 1.
10: for each prime p = B1 to B2 do
11: (xpQ0 , ypQ0 , zpQ0) ← pQ0.
12: d ← d · zpQ0 (mod N)
13: end for
14: q ← gcd(d,N)
15: if q > 1 then
16: return q
17: else
18: return FAIL
19: end if

we have k = l · |E(Zq)| for some l. For any point P0 belonging to the curve E, |E(Zq)|P0 = O, therefore
kP0 = l · |E(Zq)|P0 = O. Thus, zkP0 ≡ 0 (mod q), and the unknown factor of N , q, can be recovered by taking
gcd(zkP0 , N).

Montgomery [2, 3] and Brent [5] independently suggested a continuation of Phase 1 if one has kP0 6= O.
Their ideas utilize that fact that even if one has Q0 = kP0 6= O, the value of k might miss just one large prime
divisor of |E(Zq)|. In that case, one only needs to compute the scalar multiplication by p to get pQ0 = O. A
second bound B2 restricts the size of possible values of p.

Let M(N) be the cost of one multiplication (mod N). Then Phase 1 of ECM finds a factor q of N with the
conjectured time complexity [4] O(exp((

√
2 + o(1))

√
log q log log q)M(N)). Phase 2 speeds up Lenstra’s original

method by the factor log q which is absorbed in the o(1) term of the complexity, but is significant for small and
medium size factors q.

2.2. Operations on an Elliptic Curve
Scalar multiplication, kP , is a basic elliptic curve operation used in the ECM method. It is also a fundamental
operation of a majority of Elliptic Curve Cryptosystems [10], and therefore it has been studied extensively in
the past from the point of view of efficient implementations in software and hardware. Scalar multiplication is
defined as an addition, kP = P + ... + P (k times), where k is an integer and P is a point on an elliptic curve.

An efficient algorithm for computing scalar multiplication was proposed by Montgomery [2] in 1987, and is
known as the Montgomery ladder algorithm. This algorithm is applicable to any curve, and is independent of the
point representation, i.e., it can be executed in both affine and projective coordinates. However, it is especially
useful when an elliptic curve is expressed in Montgomery form (see Eq. 2), in projective coordinates. In this
case, all intermediate computations can be carried on using only x and z coordinates, and the y-coordinate of
the result can be retrieved (if needed) from the x and z coordinates of the final point. In the ECM method, the
y-coordinate of the result is not needed, so this final computation is unnecessary.
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As a result, we denote the starting point P0 by (x0 :: z0), intermediate points P , Q, by (xP :: zP ), (xQ :: zQ),
and the final point kP0 by (xkP0 :: zkP0). The pseudocode of the Montgomery ladder algorithm is shown below
as Algorithm 2, and its basic step is defined in detail as Algorithm 3.

Algorithm 2 Montgomery Ladder Algorithm
Require: P0 = (x0 :: z0) on E with x0 6= 0, k = (ks−1ks−2 · · · k1k0)2 > 0, an s-bit positive integer
Ensure: kP0 = (xkP0 :: zkP0)
1: Q ← P0, P ← 2P0

2: for i = s− 2 downto 0 do
3: if ki = 1 then
4: Q ← P + Q, P ← 2P
5: else
6: Q ← 2Q, P ← P + Q
7: end if
8: end for
9: return Q

Algorithm 3 Addition and Doubling using the Montgomery’s Form of Elliptic Curve
Require: P = (xP :: zP ), Q = (xQ :: zQ) with xP xQ(xP − xQ) 6= 0, P0 = (x0 :: z0) = (xP−Q :: zP−Q) = P −Q,

a24 = a+2
4 , where a is a parameter of the curve E in Eq. 2

Ensure: P + Q = (xP+Q :: zP+Q), 2P = (x2P :: z2P )
1: xP+Q ← zP−Q[(xP − zP )(xQ + zQ) + (xP + zP )(xQ − zQ)]2

2: zP+Q ← xP−Q[(xP − zP )(xQ + zQ)− (xP + zP )(xQ − zQ)]2

3: 4xP zP ← (xP + zP )2 − (xP − zP )2

4: x2P ← (xP + zP )2(xP − zP )2

5: z2P ← (4xP zP )
(
(xP − zP )2 + a24 · (4xP zP )

)

The algorithm is constructed in such a way that the difference between the intermediate points P and Q, P −Q,
is always constant, and equal to the value of the initial point P0. Therefore, xP−Q and zP−Q in the formulas in
Algorithm 3 can be replaced by x0 and z0 respectively.

A careful analysis of formulas in Algorithm 3 indicates that point addition P + Q requires 6 multiplications,
and point doubling 5 multiplications. Therefore, a total of 11 multiplications are required in each step of the
Montgomery ladder algorithm. In Phase 1 of ECM, the initial point, P0, can be chosen arbitrarily. Choosing
z0 = 1 implies zP−Q = 1 throughout the entire algorithm, and thus reduces the total number of multiplications
from 11 to 10 per one step of the algorithm independently of the i-th bit ki of k. This optimization is not
possible in Phase 2, where the initial point Q0 is the result of computations in Phase 1, and thus cannot be
chosen arbitrarily.

2.3. Parametrization of an Elliptic Curve
Let E be an elliptic curve in Montgomery form and let q be a prime with q 6 |2b(a2 − 4). Then it is well known
that the order |E(Zq)| is divisible by 4. By choosing E such that |E(Zq)| is divisible by a factor larger than 4,
one may get a slight advantage during the procedure of ECM, since ECM tries to find q such that |E(Zq)| is a
product of small primes. One popular way of having an elliptic curve with such property is to use a Suyama’s
parametrization [7]. Let σ be any integer > 5. Suyama’s parametrization defines an elliptic curve in Montgomery
form as follows: Let u = σ2 − 5, v = 4σ. Then define the curve parameters aσ, bσ by

aσ =
(v − u)3(3u + v)

4u3v
− 2, bσ =

u

v3
, (3)

and define an initial point Pσ = (xσ, yσ, zσ) by

xσ = u3 = (σ2 − 5)3, yσ = (σ2 − 1)(σ2 − 25)(σ4 − 25), zσ = v3 = 43σ3. (4)
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The advantage of using Suyama’s parametrization is as follows. First, the elliptic curve with Suyama’s parametriza-
tion always admits |E(Zq)| divisible by 12. Thus one might expect a slight advantage in finding a prime q such
that the order of E(Zq) is smooth. Second, using Suyama’s parametrization, an elliptic curve Eσ and an initial
point Pσ are completely determined by the value of σ. Therefore we can simultaneously choose different σ to
generate different curves Eσ, which is very convenient for parallel implementation of many curves. Because the
curve Eσ and the initial point Pσ are defined explicitly by the single parameter σ, experiments can easily be
replicated and compared.

Choosing a coordinate z0 of the initial point P0 to be equal to z0 = 1 is also possible with Suyama’s
parametrization. This is done by assigning x0 ≡ xσ/zσ (mod N) and z0 ≡ zσ/zσ ≡ 1 (mod N). Note that this
initialization is done with no additional inversion cost because x0 ≡ xσ/zσ ≡ (u

v )3 ≡ (4u4 · 1
4u3v )3 (mod N),

where the inverse of 4u3v (mod N) is already known in the expression of aσ of Suyama’s parametrization.

2.4. Montgomery Multiplication

Let N > 0 be an odd integer. In many cryptosystems such as RSA, computing XY (mod N) is a crucial opera-
tion. Taking the reduction of XY (mod N) is a more time consuming step than the multiplication XY without
reduction. Montgomery [1] introduced a method for calculating products (mod N) without the costly reduc-
tion (mod N), known as Montgomery multiplication. Montgomery multiplication of X and Y , MP (X,Y, N),
is defined as XY 2−n (mod N) for some fixed integer n.

Since Montgomery multiplication is not an ordinary multiplication, there is a process of conversion between
the ordinary domain (with ordinary multiplication) and the Montgomery domain. The conversion between the
ordinary domain and the Montgomery domain is given by the relation X ←→ X ′ with X ′ = X2n (mod N) and
the corresponding diagram is shown below.

Ordinary Domain ⇐⇒ Montgomery Domain

X ↔ X ′ = X2n (mod N)
Y ↔ X ′ = X2n (mod N)

XY ↔ (XY )′ = XY 2n (mod N)

The table shows that the conversion is compatible with multiplications in each domain, since

MP (X ′, Y ′, N) ≡ X ′Y ′2−n ≡ (X2n)(Y 2n)2−n ≡ XY 2n ≡ (XY )′ (mod N).

The conversion between each domain can be done using the same Montgomery operation, in particular X ′ =
MP (X, 22n(mod N), N) and X = MP (X ′, 1, N), where 22n(mod N) can be precomputed. Despite the initial
conversion cost, if we do many Montgomery multiplications followed by a conversion as in the ECM method or
in RSA, we obtain an advantage over ordinary multiplication.

Algorithm 4 Radix-2 Montgomery Multiplication

Require: N, n = blog2 Nc+ 2, X =
∑n−1

j=0 Xj2j , Y =
∑n−1

j=0 Yj2j with 0 ≤ X, Y < 2N

Ensure: Z = MP (X,Y,N) = XY 2−n (mod N) < 2N
1: S[0] ← 0
2: for i = 0 to n− 1 do
3: qi ← S[i]0 + XiY0 (mod 2)
4: S[i + 1] ← (S[i] + XiY + qiN) div 2
5: end for
6: return S[n]

Algorithm 4 shows the pseudocode for radix-2 Montgomery multiplication where we choose n = blog2 Nc+2.
It should be mentioned that our n is slightly different from blog2 Nc+ 1 which Montgomery [1] originally used.
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This modified algorithm makes all the inputs and output in the same range, i.e., 0 ≤ X,Y, S[n] < 2N . Therefore
it is possible to implement Algorithm 4 repeatedly without any reduction unlike the original algorithm [1], where
one has to take reduction (mod N) at the end of the algorithm to make the output value in the same range as
the input values.

The verification of the above algorithm is given below: Let us define S[i] as S[i] ≡ 1
2i

(∑i−1
j=0 Xj2j

)
Y

(mod N) with S0 = 0. Then, S[n] ≡ XY 2−n (mod N) = MP (X, Y,N). Thus, S[n] can be computed iteratively
using dependence:

S[i + 1] ≡ 1
2i+1




i∑

j=0

Xj2j


Y ≡ 1

2i+1




i−1∑

j=0

Xj2j + Xi2i


 Y

≡ 1
2


 1

2i




i−1∑

j=0

Xj2j


Y + XiY


 ≡ 1

2
(S[i] + XiY ) (mod N).

Therefore depending on the parity of S[i] + XiY , we compute S[i + 1] as

S[i + 1] =
S[i] + XiY

2
or

S[i] + XiY + N

2
, (5)

to make the numerator divisible by 2. Since n = blog2 Nc+ 2, one has 0 ≤ S[i] < 2N by the Eq. 5.

2.5. Implementation of Phase 2
Phase 1 computes one scalar multiplication kP0, and the implementation issues are relatively easy compared to
Phase 2. For Phase 2, we follow the basic idea of the standard continuation [2] and modify it appropriately for
efficient FPGA implementation. Choose 0 < D < B2, and let every prime p, B1 < p ≤ B2, be expressed in the
form

p = mD ± j (6)

where m changes between MMIN = b(B1 + D
2 )/Dc to MMAX = d(B2− D

2 )/De, and j varies between 1 and bD
2 c.

The condition that p is prime implies that gcd(j, D) = 1. Thus, possible values of j form a set JS = {j : 1 ≤
j ≤ bD

2 c, gcd(j,D) = 1}, of the size of φ(D)/2, and possible values of m form a set MT = {m : MMIN ≤ m ≤
MMAX}, of the size MN = MMAX −MMIN + 1. Then, the condition pQ0 = O, implies (mD ± j)Q0 = O, and
thus mDQ0 = ±jQ0.

Writing mDQ0 = (xmDQ0 :: zmDQ0) and jQ0 = (xjQ0 :: zjQ0), the condition mDQ0 = ±jQ0 ∈ E(Zq) is
satisfied if and only if xmDQ0zjQ0 − xjQ0zmDQ0 ≡ 0 (mod q). Therefore existence of such pair m and j implies
that one can find a factor of N by computing

gcd (d,N) > 0, where d =
∏

m,j

(xmDQ0zjQ0 − xjQ0zmDQ0) (7)

In order to speed up these computations, one precomputes one of the sets S = {jQ0 : j ∈ JS} or T = {mDQ0 :
m ∈ MT }. Typically, the first of these sets, S, is smaller, and thus only this set is precomputed. One then
computes the product d in the Eq. 7 for a current value of mDQ0, and all precomputed points jQ0, for which
either mD + j or mD − j is prime. For each pair, (m, j), where j ∈ JS and m ∈ MT , we can precompute a bit
table:

prime table[m, j] = 1 when mD + j or mD − j is prime, and 0 otherwise

This table can be reused for multiple iterations of Phase 2 with the same values of B1 and B2, and is of the
size of MN · φ(D)/2 bits. Similarly, we can precompute a bit table:

GCD table[j] = 1 when j ∈ JS , and 0 otherwise

This table will have D/2 bits for odd D and D/4 for even D (no need to reserve bits for even values of
j). This leads to the following version of the algorithm for Phase 2, in which we assume D is even. Values of
D = 30 = 2 · 3 · 5 and D = 210 = 2 · 3 · 5 · 7 are the two most natural choices for D as they minimize the size of
sets JS and S and as a result of the amount of precomputations and memory storage required for Phase 2.
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Algorithm 5 Standard Continuation Algorithm of Phase 2
Require: N : number to be factored, E: elliptic curve, Q0 = kP0: initial point for Phase 2 calculated as a result

of Phase 1, B1: smoothness bound for Phase 1, B2: smoothness bound for Phase 2, B2 > B1, D: parameter
determining a trade-off between the computation time and the amount of memory required

Ensure: q: factor of N , 1 < q ≤ N or FAIL
Precomputations:

1: MMIN ← b(B1 + D
2 )/Dc, MMAX ← d(B2 − D

2 )/De
2: clear GCD table, clear JS

3: for each j = 1 to D
2 do

4: if gcd(j,D) = 1 then
5: GCD table[j] = 1
6: add j to JS

7: end if
8: end for
9: clear prime table

10: for each m = MMIN to MMAX do
11: for each j = 1 to D

2 do
12: if (mD + j or mD − j is prime) then
13: prime table[m, j] = 1
14: end if
15: end for
16: end for
17: Q ← Q0

18: for j = 1 to D
2 step 2 do

19: if GCD table[j] = 1 then
20: store Q in S //Q = jQ0 = (xjQ0 :: zjQ0)//
21: end if
22: Q ← Q + 2Q0

23: end for

Main computations:

24: d ← 1, Q ← DQ0, R ← MMINQ
25: for each m = MMIN to MMAX do
26: for each j ∈ JS do
27: if prime table[m, j] = 1 then
28: retrieve jQ0 from table S
29: d ← d · (xRzjQ0 − xjQ0zR) //R = (xR :: zR)//
30: end if
31: end for
32: R ← R + Q
33: end for
34: q ← gcd(d, N)
35: if q > 1 then
36: return q
37: else
38: return FAIL
39: end if
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2.6. Choice of B1, B2 and D

The subexponential time complexity O(exp((
√

2 + o(1))
√

log q log log q)M(N)) of ECM is achieved by choosing
the theoretical bound B1 ≈ e

√
1
2 log q log log q [4], where log is a natural logarithm. However the precise value of

o(1) term is difficult to estimate. Choice of the bound B1 is closely related with Dickman-de Brujin function
ρ(u) [3], which gives the probability that a randomly chosen integer X is X

1
u -smooth. As with the case of B1,

an optimal bound B2 is related with certain numerical integrations involving Dickman-de Brujin type functions.
However, it seems that predicting precise values of theoretical optimal bounds, B1 and B2, is rather difficult.
Instead, one usually determines B1 first (which is more or less close to e

√
1
2 log q log log q) and set B2 between

50B1 and 100B1 depending on the computational resources for Phase 2. For example, Simka et al. [18] choose
B1 = 960 and B2 = 57000 to find a 40-bit prime divisor of 200-bit integers. By setting q = 241, we have
e
√

1
2 log q log log q ≈ 988 which is close to 960. The ratio B2/B1 in [18] is 57000/960 ≈ 59.

In Phase 2, one needs at most D point additions for the computation of the set S and at most B2/D additions
for the table T . Thus the time complexity of finding tables of S and T is O(D +B2/D). By choosing D ≈ √

B2,
one minimizes O(D + B2/D) = O(

√
B2). Also one may choose D in such a way that it has many prime factors

so that the size of the set S can be further reduced. However in memory constrained hardware devices, choosing
D ≈ √

B2 is not possible because the table S (or at least one of S and T ) should be precomputed and needs
to be saved. For hardware purposes, one may choose D sufficiently small such as D = 30 or 210 and use the
precomputed table S.

2.7. Software Implementation of ECM and Summary of GMP-ECM

The ECM method is implemented in many educational software packages such as Maple or Mathematica as well
as in the educational program for learning cryptology, CrypTool [11]. On the other hand, massively parallel
implementations of the ECM method are reported in [8, 9]. One of the most popular and powerful ECM tools is
GMP-ECM [15]. It contains various optimization techniques for Phase 1 and Phase 2 and exploits many ideas
known in the literature. Especially, it uses elliptic curves in Montgomery form with Suyama’s parametrization.
Let us briefly explain some of the optimization techniques in GMP-ECM.

Table 1. Summary of GMP-ECM

Phase 1 Phase 2

Elliptic Curve Montgomery form: by2z = x3 + ax2z + xz2 Weierstrass form: Y 2 = X3 + AX + B

Coordinate Projective Affine

Optimization Techniques Lucas chain (PRAC algorithm) Fast polynomial multiplication

(Reducing time) Montgomery’s D1D2 method

Optimization Techniques Brent-Suyama extension

(Increasing probability)

Porting Optimizations Possible with precomputations in software Inverter required

to Hardware Large amounts of memory required

Phase 1 in GMP-ECM : The main operation here is to compute kP0 for a fixed point P0 on the curve E.
Projective coordinates are used. To minimize the number of necessary point additions and doublings, GMP-ECM
uses Lucas chains for k instead of using a Montgomery ladder algorithm with binary expansion of k. A typical
example of Lucas sequence is a Fibonacci sequence; 1, 1, 2, 3, 5, 8, 13, 21, · · · . For instance, the computation of
21P can be done by the chain of the points P, 2P, 3P, 5P, 8P, 13P and 21P . Since the i-th point Pi satisfies
Pi = Pi−1 + Pi−2 and Pi−1 − Pi−2 = Pi−3, the difference of two points is also in the sequence and therefore
we can use the addition formula in Algorithm 3. With Lucas chains, one needs 5 additions and 1 doubling to
compute 21P . However, if we use a Montgomery ladder algorithm with 21 = (10101)2, we need 4 additions and
4 doublings because both of addition and doubling are performed in each step. The Lucas chain idea might be
useful in hardware, assuming that the best possible Lucas chain is first precomputed in software.

Phase 2 in GMP-ECM : Phase 2 requires a substantial amount of memory for the tables S and T . Moreover
to use fast polynomial arithmetic, GMP-ECM uses affine coordinates with the Weierstrass form of elliptic curve
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to compute G(x) =
∏

(xτ ,yτ )∈T (x − xτ ) using the product tree algorithm [6]. Then GMP-ECM applies the
POLYEVAL algorithm to compute

∏
(xσ,yσ)∈S G(xσ) where the polynomial multiplications are done using the

Schönhage-Strassen algorithm [7].

Another approach possible in Phase 2 is the Brent-Suyama extension. It is based on the idea that, for any
polynomial f with integer coefficients and for any integer i and j, one has i ± j|f(i) ± f(j). Therefore a point
Q satisfying (i ± j)Q = O also satisfies (f(i) ± f(j))Q = O but the converse might not be true. That is, one
may expect that Q is killed by f(i) ± f(j) even though (i ± j)Q 6= O. GMP-ECM uses f(x) = xs or Dickson
polynomial. Computing f(i)Q from the information of f(i− 1)Q requires one to compute certain points Q1, Q2

and Q1 + Q2 where Q1 − Q2 is not known. Therefore a standard Weierstrass form of elliptic curve with affine
coordinates is used instead of the Montgomery form of elliptic curve with projective coordinates. It should be
mentioned that the Brent-Suyama extension increases the probability in Phase 2 by slightly sacrificing the speed.

Another optimization technique in Phase 2 of GMP-ECM is the so called D1D2 method of Montgomery.
Montgomery [3] suggested that one may use D1, D2 instead of using one D. By choosing D1, D2 < B2 with
gcd(D1, D2) = 1, any integer p < B2 is represented as

p = iD1 + jD2,

where 0 ≤ j < D1 (equivalently, jD2 ≡ p (mod D1)) and i = p−jD2
D1

. In this case, the table S = {jD2Q} is
same as the table in the previous case with D2 = 1. However the size of the table T is reduced by the factor
1 − φ(D2)

D2
as follows. Since iD1 + jD2 = p is a prime, the table T = {iD1Q} has the restriction gcd(i,D2) = 1

with −D2 < i < B2
D1

. If 0 < D2 < D1 << B2, then the lower bound of i is almost same as the previous case with
D2 = 1 and the condition gcd(i,D2) = 1 implies that the new table T excludes the indices i with gcd(i,D2) > 1.
Therefore the size of a new table T is ≈ B2

D1
· φ(D2)

D2
and it is reduced by the factor of 1 − φ(D2)

D2
compared with

the original construction of the case D2 = 1.

3. ECM ARCHITECTURE

3.1. Top-level view: ECM units

Our ECM system consists of multiple ECM units working independently in parallel, as shown in Figure 1. Each
unit performs the entire ECM algorithm for one number N, one curve E and one initial point P0. All units share
the same global control unit and the same global memory. All components of the system are located on the
same integrated circuit, either an FPGA or an ASIC, depending on the choice of an implementation technology.
The exact number of ECM units per integrated circuit depends on the amount of resources available in the
given integrated circuit. Multiple integrated circuits may work independently in parallel, on factoring a single
number, or factoring different numbers. All integrated circuits are connected to a central host computer, which
distributes tasks among the individual ECM systems, and collects and interprets results.

The operation of the system starts by loading all parameters required for Phase 1 of ECM from the host
computer to the global memory on the chip. These parameters include:

1. Number to be factored, N , coordinates of the starting point P0, and the parameter a24 dependent on the
coefficient a of the curve E - all of which can be different for each ECM unit.

2. Integer k, used as an input in the ECM Phase 1 (see Algorithm 1), its size kN , and the parameter
n = blog2 NMAXc + 2, related to the size of the largest N, NMAX , processed by the ECM units - all of
which are common for all ECM units.

The contents of the global memory after initialization for Phase 1 is shown in Figure 2.

Next, N , the coordinates of P0, and the parameters a24 and n are loaded to the local memories of their
respective ECM units. The operation of these units is started. All units operate synchronously, on different data
sets, performing all intermediate calculations exactly at the same time.

9



Figure 1. Block diagram of the top-level unit. Notation: MEM-memory; M1, M2-multipliers 1 and 2; A/S-adder/subtractor.

Figure 2. Contents of the Global Memory in a) Phase 1, b) Phase 2.
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The results of these calculations are coordinates xQ0 and zQ0 of the ending point Q0 = kP0, separate for
each ECM unit. These coordinates are downloaded to the host computer, which performs the final calculation
of Phase 1, pi = gcd(zQ0 , N). If pi = 1, no factor was found by a given ECM unit. If pi > 1 and pi 6= N , then
a non-trivial factor of N , pi, was found. If pi is equal to N for all ECM units working on the same N , then the
computations of Phase 1 need to be repeated for a smaller value of the bound B1.

If no factor of N was found, the ECM system is ready for Phase 2. The values of N , parameters of the curves
a24, and the coordinates of the points Q0 obtained as a result of Phase 1 are already in the local memories of each
ECM unit. The host computer calculates and downloads to the global memory of the ECM system the following
parameters dependent on B2 and D: MMIN , MN = MMAX −MMIN +1; bit table called the GCD table, which
for every odd j ≤ D/2, determines whether gcd(j,D) = 1; bit table called the prime table, which for every
MMIN ≤ m ≤ MMAX and 0 < j ≤ D/2 determines whether either m ·D + j or m ·D − j is a prime.

The contents of the global memory after initialization for Phase 2 is shown in Figure 2b. Note that the
previous contents of the global memory used for Phase 1 can be overwritten because the inputs to Phase 1 are
either no longer needed (P0, k), or have been already loaded to the local memories (N, a24). Phase 2 is then
started simultaneously on all ECM units, and produces as final results, the accumulated products d (see Eq. 7).
These final results are then download to the host computer, where the final calculations gcd(d,N) are performed.

Note that with this top level organization, there is no need to compute greatest common divisors or divisions
in hardware. Additionally, the overhead associated with the transfer of data between the ECM system and
the host computer, and the time of computations in software are both typically insignificant compared to the
time used for ECM computations in hardware, even in the case of a relatively slow interface and/or a slow
microprocessor.

3.2. Medium-level View: Operations of the ECM Unit

3.2.1. Medium-level operations

The primary operation constituting Phase 1 of ECM is a scalar multiplication Q0 = kP0. As discussed in
Section 2.2, this operation can be efficiently implemented in projective coordinates using Algorithm 2.

The two elementary steps of this algorithm consist of the computations

Step 1: P = 2P
Q = P + Q

Step 2:
P = P + Q
Q = 2Q.

The second step can be calculated using the exact operations of the first step with a simple swap of input
and output variables:

P ′ = Q,

Q′ = P

P ′ = 2P ′

Q′ = P ′ + Q′

P = Q′ = P + Q

Q = P ′ = 2Q.

Thus, only one of these two steps, and a conditional swap of variables at the input and output needs to be
implemented.

In Phase 1, one coordinate of P0 can be chosen arbitrarily, and therefore the computations can be simplified
by selecting zP0 = zP−Q = 1. The remaining computations necessary to simultaneously compute P + Q and
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zP+Q = xP−Q [(xP − zP ) (xQ + zQ) − (xP + zP ) (xQ − zQ)]2

xP+Q = zP−Q [(xP − zP ) (xQ + zQ) + (xP + zP ) (xQ − zQ)]2

s1 a2 a1 s2

︸ ︷︷ ︸ ︸ ︷︷ ︸
m3 + m4

︸ ︷︷ ︸
[ a3 ]2

︸ ︷︷ ︸
xP+Q = m7

︸ ︷︷ ︸ ︸ ︷︷ ︸
m3 − m4

︸ ︷︷ ︸
[ s4 ]2

︸ ︷︷ ︸
zP+Q = xP−Q · m8

Figure 3. Computation flow for a step of scalar multiplication computing P + Q

2P can be interleaved, and assigned to three functional units working in parallel, as shown in Table 2. For
example, in Figure 3, we show the computational flow for P + Q. The entire step of a scalar multiplication,
including both point addition and doubling can be calculated in the amount of time required for 2 modular
additions/subtractions and 5 modular multiplications. Note that because the time of an addition/subtraction
is much shorter than the time of a multiplication, two sequential additions/subtractions can be calculated in
parallel with a single multiplication.

Table 2. One step of a scalar multiplication, including the concurrent operations P +Q and 2P , for the case of zP−Q = 1. Notation:
A: operation used for addition only, D: operation used for doubling only, A/D: operation used for addition and doubling.

Adder/Subtractor Multiplier 1 Multiplier 2

A/D:
a1 = xP + zP

s1 = xP − zP

A/D:
a2 = xQ + zQ

s2 = xQ − zQ
D: m1 = s2

1 D: m2 = a2
1

D: s3 = m2 −m1 A: m3 = s1 · a2 A: m4 = s2 · a1

A:
a3 = m3 + m4
s4 = m3 −m4

D: x2P = m5 = m1 ·m2 D: m6 = s3 · a24

D: a4 = m1 + m6 A: xP+Q = m7 = a2
3 A: m8 = s2

4
A: zP+Q = m9 = m8 · xP−Q D: z2P = m10 = s3 · a4

The storage used for temporary variables a1, . . . , a4, s1, . . . , s4, and m1, . . . , m10 can be reused whenever any
intermediate values are no longer needed. With the appropriate optimization, the amount of local memory
required for Phase 1 has been reduced to 11 256-bit operands, i.e., 88 32-bit words. The remaining portion of
this memory is used in Phase 2 of ECM.

In Phase 2, the initial computation

D ·Q0 and MMIN · (D ·Q0)

can be performed using a similar algorithm to the one used in Phase 1. The only difference is that now,
P −Q = Q0, cannot be chosen arbitrarily, and thus, zP−Q = zQ0 6= 1 in general. As a result, the computations
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will take the amount of time required for 2 modular additions/subtractions and 6 modular multiplications, as
shown in Table 3.

Table 3. One step of a scalar multiplication, including the concurrent operations P +Q and 2P , for the case of zP−Q 6= 1. Notation:
A: operation used for addition only, D: operation used for doubling only, A/D: operation used for addition and doubling.

Adder/Subtractor Multiplier 1 Multiplier 2

A/D:
a1 = xP + zP

s1 = xP − zP

A/D:
a2 = xQ + zQ

s2 = xQ − zQ
D: m1 = s2

1 D: m2 = a2
1

D: s3 = m2 −m1 A: m3 = s1 · a2 A: m4 = s2 · a1

A:
a3 = m3 + m4
s4 = m3 −m4

D: x2P = m5 = m1 ·m2 D: m6 = s3 · a24

D: a4 = m1 + m6 A: m7 = a2
3 A: m8 = s2

4
A: zP+Q = m9 = m8 · xP−Q D: z2P = m10 = s3 · a4

A: xP+Q = m11 = m7 · zP−Q

The second type of operation required in Phase 2 is a simple point addition P + Q. This operation can be
performed using the time of 6 additions/subtractions and 3 modular multiplications, as shown in Table 4.

Table 4. Addition of points P + Q

Adder/Subtractor Multiplier 1 Multiplier 2
a1 = xP + zP

s1 = xP − zP

a2 = xQ + zQ

s2 = xQ − zQ

m3 = s1 · a2 m4 = s2 · a1
a3 = m3 + m4
s3 = m3 −m4

m7 = a2
3 m8 = s2

4
zP+Q = m10 = m8 · xP−Q xP+Q = m11 = m7 · zP−Q

Finally, the last medium level operation required in Phase 2 is the accumulation of the product d:

d ≡
∏

i,n

din ≡
∏

i,n

(xnzi − xizn) (mod N)

where

(xi, zi) ∈ {(x, z) : (x, z) = jQ0},
(xn, zn) ∈ {(x, z) : (x, z) = mDQ0}

and GCD table[j]=1 and prime table[m, j]=1. The repetitive sequence of such operations is shown in Table 5.

Table 5. Accumulation of the partial results
Q
i,n

(xnzi − xizn) (mod N) in Phase 2 (for fixed n and moving i)

Adder/Subtractor Multiplier 1 Multiplier 2
m1 = xn · z0 m2 = x0 · zn

d0n = m1 −m2 m3 = xn · z1 m4 = x1 · zn

d1n = m3 −m4 d = d · d0n m1 = xn · z2
d = d · d1n m2 = x2 · zn

d2n = m1 −m2 m3 = xn · z3 m4 = x3 · zn

d3n = m3 −m4 d = d · d2n m1 = xn · z4
d = d · d3n m2 = x4 · zn

· · · · · · · · · · · · · · · · · ·

As can be seen from Table 5, after the initial delay of one multiplication, the time required to compute and
accumulate any two subsequent values of din is equal to the time of three multiplications.
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Figure 4. Contents of the local memories in a) Phase 1, b) Phase 2.

3.2.2. Instructions of the ECM unit

Each ECM unit is composed of two modular multipliers, one adder/subtractor, and one local memory. The local
memory is 512 32-bit words in size, equivalent to 64 256-bit registers. The contents of the local memory during
the execution of Phase 1 and Phase 2 are shown in Figures 4a and 4b, respectively. In Phase 1, only 11 out of
64 256-bit registers are in use. In Phase 2, with D = 210 the entire memory is occupied.

Every ECM unit forms a simple processor with its own instruction set. Since all ECM units execute exactly
the same instructions at the same time, the instructions are stored in the global instruction memory, and are
interpreted using the global control unit, as shown in Figure 1.

Three sequences of ECM instructions describe three kinds of medium-level operations:

1. One step of a scalar multiplication kP (P = 2P , Q = P + Q) in Phase 1, i.e., with zP0 = 1 (see Table 2).

2. One step of a scalar multiplication kP (P = 2P , Q = P + Q) in Phase 2, i.e., with zP0 6= 1 (see Table 3).

3. Addition P + Q in Phase 2, i.e., with zP0 6= 1 (see Table 4).

Each instruction describes the operation of one of the functional units corresponding to Tables 2, 3 and 4, and
encodes the addresses of locations in the local memory used to store input 1, input 2, and output of the given
operation, as shown in Figure 5. Since only 11 256-bit registers are necessary to perform each of the sequences
of instructions given above, only 4 bits are required to encode the input/output address.

The operation performed by each instruction is determined based on the position of the instruction in the
instruction sequence, and thus no opcode is needed in the instruction body. In particular, a group of four
instructions corresponds to one row of Tables 2, 3 and 4, and is listed in the order: Multiplication 2, Multiplication
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SWAP ON INPUT 1 INPUT 2 OUTPUT
XX X XXXX XXXX XXXX

Figure 5. Format of an ECM system instruction

1, Subtraction, and Addition. These four consecutive instructions are fetched serially, but executed in parallel.
The processor progresses to the next group of four instructions only when all instructions of the previous group
have been completed.

In each table there exist empty fields, which means that the given arithmetic unit should remain inactive
in the given step, this inactivity is described using the flag ON, in the instruction body. Additionally, for the
scalar multiplications, two SWAP bits determine which instructions swap inputs or outputs between P and Q,
depending on the current bit of a scalar k. Swapping inputs affects only the first four additions/subtractions in
Tables 1 and 2, i.e., the instructions that use xP , zP , xQ, and zQ as inputs. Swapping outputs affects only the
four instructions that compute outputs xP+Q, zP+Q, x2P , and z2P in Tables 2, 3. The SWAP bits are set to
“00” (no swap) for all instructions of the point addition in Phase 2 (Table 4). In the optimized version of our
design, the number of ON flags has been increased to two, which allowed us to overlap sequences of instructions
corresponding to Tables 2, 3, 4 and minimize the total number of instructions in the instruction memory to 32.

3.3. Low-level View: Modular multiplication and addition/subtraction

The three low level operations implemented by the ECM unit are Montgomery modular multiplication (defined
in Section 2.4), modular addition, and modular subtraction. Modular addition and subtraction are very similar
to each other, and as a result they are implemented using one functional unit, adder/subtractor.

In order to simplify our Montgomery multiplier, all operations are performed on inputs X,Y in the range
0 ≤ X, Y < 2N , and return an output S in the same range, 0 ≤ S < 2N . This is equivalent to computing
all intermediate results modulo 2N instead of N , which increases the size of all intermediate values by one bit,
but shortens the time of computations, and leads to exactly the same final results as operations (mod N).
The algorithms for modular addition and subtraction are shown as Algorithms 6 and 7 respectively. In both
algorithms, S is a result variable, T is a temporary variable, and C1, C2 are two carry bits.

Algorithm 6 Modular addition
Require: N, X, Y < 2N , all expressed using e 32-bit words, X(j), Y (j), N (j), j = 0, . . . , e− 1
Ensure: Z = X + Y mod 2N
1: for j = 0 to e− 1 do
2: (C1, T

(j)) ← C1 + X(j) + Y (j)

3: end for
4: for j = 0 to e− 1 do
5: (C2, S

(j)) ← C2 + T (j) − (2N)(j)

6: end for
7: if S < 0 then
8: return T
9: else

10: return S
11: end if

The block diagram of the adder/subtractor unit implementing both algorithms is shown in Figure 6. The
modulus N is loaded to the adder/subtractor, using input XN , one time, during the initialization stage of Phase
1, and does not need to be changed until the next run of Phase 1 for another number N . This modulus is
stored in the internal 32 × 32-bit memory, used to hold three numbers N , S, and T , all up to 256 bits wide.
The 32-bit words of operands X and Y are loaded in parallel, starting from the least significant word, and
immediately added or subtracted, depending on the value of the control input sub add (with sub add = 1
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Algorithm 7 Modular Subtraction
Require: N , X, Y < 2N , all expressed using e 32-bit words

X(j), Y (j), N (j), j = 0, . . . , e− 1
X(j), Y (j), N (j), j = 0, . . . , e− 1

Ensure: Z = X − Y mod 2N
1: for j = 0 to e− 1 do
2: (C2, S

(j)) ← C2 + X(j) − Y (j)

3: end for
4: for j = 0 to e− 1 do
5: (C1, T

(j)) ← C1 + S(j) + (2N)(j)

6: end for
7: if S < 0 then
8: return T
9: else

10: return S
11: end if

denoting subtraction). The result is stored in the internal memory as variable T for addition i.e. X + Y , and S
for subtraction i.e. X − Y . This first operation is followed by the second operation of the respective algorithm,
involving the previously computed value and the modulus 2N computed on the fly, with the result stored back
to the memory. Finally, depending on the sign of S, stored in the flip-flop C2, either T or S is returned as a
final result. For 256-bit operands, the entire operation takes 41 clock cycles (including writing data back to local
RAM), the same amount for addition and subtraction.

The radix-2 version of the Montgomery Multiplication algorithm, which calculates the Montgomery product
of X and Y is specified as Algorithm 4 in section 2.4. This algorithm assumes that all words of the inputs X,
Y , and M , are already available inside of the multiplier, and can be accessed at the same time. The second
instruction inside of the for loop involves the addition of three long words. If implemented directly in hardware
the operation would result in a long critical path and a very low clock frequency. In order to prevent that, this
addition is performed using carry save adders, and the result S[i + 1] is stored in the carry save form. Using
carry save adders, the sum of three numbers U , V , W is reduced to the sum of two numbers S (sum) and C
(carry), such that U +V +W = C +S. Similarly, using a cascade of two carry save adders, as shown in Figure 7,
the sum of four numbers, U , V , W , and Y can be reduced to the sum of two numbers S and C, such that
U + V + W + Y = C + S. Each carry save adder is composed of a row of n Full Adders working in parallel, so
it introduces a delay of just a single Full Adder (i.e., a delay of a single stage of a basic ripple-carry adder).

Algorithm 8 Radix-2 Montgomery Multiplication with Carry Save Addition

Require: N, n = blog2 Nc+ 2, X =
∑n−1

j=0 Xj2j , Y =
∑n−1

j=0 Yj2j with 0 ≤ X, Y < 2N

Ensure: Z = MP (X, Y,N) = X · Y · 2−n (mod N) < 2N ; Z(j),C[n](j), S[n](j) denote a j-th word of Z,C[n]
and S[n] respectively.

1: S[0] ← 0
2: C[0] ← 0
3: for i = 0 to n− 1 do
4: qi ← (C[i]0 + S[i]0 + Xi · Y0) (mod 2)
5: (C[i + 1], S[i + 1]) ← CSA(C[i], S[i], Xi · Y, qi ·N) div 2
6: end for
7: C = 0
8: for j = 0 to 7 do
9: (C, Z(j)) ← C[n](j) + S[n](j) + C

10: return Z(j)

11: end for
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Figure 6. Block diagram of the adder-subtractor

Figure 7. A cascade of two carry save adders, reducing four operands to two
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Figure 8. Block diagram of a Montgomery multiplier

The modified algorithm, based on carry save addition (CSA) is shown as Algorithm 8. This algorithm has
been described earlier in [25]. The block diagram of the circuit implementing Algorithm 8 is shown in Figure 8.
The modulus N and the parameter n are loaded in to the multiplier once at the beginning of Phase 1, and do not
need to be changed until the beginning of Phase 1 for another number N . At the beginning of multiplication,
the inputs X and Y are first loaded in parallel, in 32-bit words, to internal 256-bit registers X and Y . In the
following n clock cycles, the circuit executes n iterations of the for loop. Finally, in the last 8 clock cycles, the
final result is computed word by word, starting from the least significant word, and transferred to the output.
The total execution time of a single Montgomery multiplication is equal to n + 16 clock cycles. For a typical use
within ECM, n is greater than 100, and thus one addition followed by one subtraction can easily execute in an
amount of time significantly smaller than the time of a single Montgomery multiplication.

4. IMPLEMENTATION RESULTS

Our ECM system has been developed entirely in RTL-level VHDL, and written in a way that provides portability
among multiple families of FPGA devices and standard-cell ASIC libraries. In the case of FPGAs, the code has
been synthesized using Synplicity Synplify Pro v. 8.0, and implemented on FPGAs using Xilinx ISE v. 6.3, 7.1
and 8.1. Five different families of FPGA devices have been targeted, including the high-performance families,
Virtex E, Virtex II, and Virtex 4, as well as low-cost families, such as Spartan 3 and Spartan 3E. The entire
design has been thoroughly verified using test vectors generated by a special test program written in C and by
comparison with the results of GMP-C.

In Table 6, we summarize the memory requirements of our ECM hardware architecture. The local memory
represents memory located within each ECM unit, with a memory map shown in Figure 4. In Phase 1, only 11
256-bit registers are required, taking a total of 88 memory words, and thus a 128x32 bit memory is sufficient to
hold all inputs, outputs, and temporary values. In Phase 2, the same registers are required, and an additional
precomputed table S of points of the form jQ0, where 1 ≤ j ≤ bD/2c, and gcd(j, D) = 1. Clearly, the size of
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this table depends on D, and as a result the total size of the local memory is equal to 256x32 for D = 30 and
512x32 for D = 210. In the modern families of FPGA devices, such as Spartan 3 and Virtex II, the smallest
size of BRAM (Block RAM) that can be allocated to a local memory is 512x32, and smaller memories can be
implemented only using distributed RAMs available within CLB slices. Thus, one BRAM is sufficient to hold
local memory for both Phase 1 and 2.

Global memory is the memory used by the global control unit, and its map is shown in Fig. 2. The size of
this memory in Phase 1 is determined primarily by the number of ECM units. In Phase 2, this memory can be
completely overwritten by new values. It is worth noting that the size of its main component, prime table, is
almost independent of the value of D. For 6 ECM units per each control unit, memory requirements in Phase 1
and Phase 2 match, and amount to 256 32-bit words, or one BRAM in modern families of FPGAs. The size of
global memory has been minimized by the use of bit tables, GCD table and prime table, defined in Section 2.5.

Table 6. Amount of memory required by the ECM Hardware Architecture (for the number of bits of N , n < 254)

# BRAMs # BRAMs

# 32-bit in in

Objects # objects words # # Memory Virtex Spartan 3

per of words of bits size (256× 16 &

objects or Virtex 2

512 x 8) (512× 32)

Local memory - Phase 1

Registers 11 8 88 2816 128 x 32 1 1

Local memory - Phase 1 & 2, D = 30

Registers 11 8 88 2816

jQ0 4 16 64 2048

DQ0, mDQ0 2 16 32 1024

184 5888 256 x 32 2 1

Local memory - Phase 1 & 2, D = 210

Registers 11 8 88 2816

jQ0 24 16 384 12288

DQ0, mDQ0 2 16 32 1024

504 16128 512 x 32 4 1

Global memory - Phase 1 (6 ECM units, B1 = 960)

ECM unit 6× 4 8 192 6144

init values

kN 1 1 1 32

k 1 43 43 1376

236 7552 256 x 32 2 1

Global memory, Phase 2 (D = 30)

GCD table 1 1 1 32

Mmin, MN 2 1 2 64

prime table 1 234 234 7488

237 7584 256 x 32 2 1

Global memory, Phase 2 (D = 210)

GCD table 1 2 2 64

Mmin, MN 2 1 2 64

prime table 1 201 201 6432

205 6560 256 x 32 2 1

The execution times of Phase 1 and Phase 2 in our ECM hardware architecture are derived in Table 7. The
generic formulas for all component operations are shown, together with the values of the execution times for the
case of 198-bit numbers N , and the smoothness bounds B1 = 960 and B2 = 57000. Two values of the parameter
D are considered for Phase 2, D = 30 and D = 210. The table proves that the choice of the parameter D = 210,
reduces the execution time of Phase 2 in our architecture by 46% compared to the case of D = 30. It also makes
this time comparable to the execution time of Phase 1. This reduction is accomplished primarily by a significant
reduction in the time required to compute values of mDQ0 for m = MMIN + 1 to MMAX . This time is the
largest contributor to the total time of Phase 2 for the case of D = 30. The value of D = 210 is close to the
theoretical optimum

√
B2 = 239, discussed in Section 2.6, and at the same time, the choice of D = 2 · 3 · 5 · 7
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Table 7. Execution time of Phase 1 and Phase 2 in the ECM hardware architecture for 198-bit numbers N, B1 = 960 (which implies
number of bits of k, kN = 1375), B2 = 57000, and D = 30 or D = 210

Operation Notation Formula # clk # clk

cycles cycles

D = 30 D = 210

Elementary operations

Modular addition TA 41

Montgomery TM TM = n + 16 216

multiplication

Point addition

and doubling TAD1 TAD1 = 5TM + 2TA + 50 1212

(Phase 1)

Point addition

and doubling TAD2 TAD2 = 6TM + 2TA + 50 1428

(Phase 2)

Point addition TADD2 TADD2 = 3TM + 6TA + 30 924

(Phase 2)

Phase 1

Phase 1 TP1 TP1 = kN · TAD1 1,666,500

Phase 2

Precalculating TjQ TjQ = 2TAD2 + (bD/4c − 2)TADD2 7476 49,056

jQ0 (0.23%) (2.85%)

DQ0 TDQ TDQ = dlog2(D + 1)eTAD2 7140 11,424

(0.22%) (0.66%)

MMIN DQ0 TMminDQ TMminDQ = dlog2(MMIN + 1)eTAD2 8586 4284

(0.27%) (0.25%)

Calculating TmDQ TmDQ = (MN − 2)TADD2 1,725,108 244,860

mDQ0 for m = (53.63%) (14.21%)

MMIN + 1...MMAX

Number of ones nprime table 4531 4361

in the

prime table

Calculating Td Td = (d1.5 · nprime tablee+ 1)TM 1,468,368 1,413,072

accumulated (45.65%) (82.03%)

product d

Phase 2 TP2 TP2 = TjQ + TDQ + TMminDQ 3,216,660 1,722,696

+TmDQ + Td (100%) (100%)
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Table 8. Comparison with the design by Pelzl, Šimka, et al., both implemented using Virtex 2000E-6.

Part 1: Execution Time

Pelzl, Šimka, et al. Our design Ratio

Pelzl, Šimka / ours

# clk cycles Time # clk cycles Time # clk cycles Time

Clock period 26 ns 19 ns

Modular addition 24 0.62 µs 41 0.78 µs 0.6 0.8

Modular subtraction 16 0.42 µs 41 0.78 µs 0.4 0.5

Montgomery 796 20.7 µs 216 4.1 µs 3.7 5.0

multiplication

Point addition & 8200 213.2 µs 1212 23.0 µs 6.8 9.3

doubling (Phase 1)

Phase 1 11,266,800 292.9 ms 1,666,500 31.7 ms 6.8 9.3

Point addition & 8998 233.9 µs 1428 27.1 µs 5.6 8.6

doubling (Phase 2)

Point addition 4920 127.9 µs 924 17.6 µs 4.8 7.3

(Phase 2)

Calculation and 4776 124.2 µs 648 12.3 µs 6.2 10.1

accumulation of

two values of di

(Phase 2)

Phase 2 (D = 30) 20,276,060 527.2 ms 3,216,660 61.1 ms 6.3 8.6

Phase 2 (D = 210) - - 1,722,912 32.7 ms 11.8 16.1

Part 2: Resource usage per one ECM unit

Pelzl, Šimka, et al. Our design Ratio

(D = 210) Ours / Pelzl, Šimka

Number of # % # %

CLB slices 6.0 3102 16 2.7

LUTs 1754 4.5 4933 13 2.8

FFs 506 1.25 3129 8 6.2

BRAMs 44 27 2 1.25 0.045

Maximum 3 7

number of ECM (limited by BRAMs) (limited by CLB slices) 2.33

units per chip

(a product of small primes) helps to somewhat reduce the size of the precomputed table S. For the given values
of the smoothness bounds B1 = 960 and B2 = 57, 000, the choice of D = 210 results in the smallest possible
execution time of Phase 2. For this value of D, the largest contribution to this execution time, 82%, comes from
the calculation of the accumulated product d.

In Table 8, we compare our ECM architecture to an earlier design by Pelzl, Šimka, et al., presented at
SHARCS 2005, and described in subsequent publications [16, 18]. Every possible effort was made to make this
comparison as fair as possible. In particular, we use an identical FPGA device, Virtex 2000E-6. We also do not
take into account any limitations imposed by an external microcontroller used in the Pelzl/Šimka architecture.
Instead, we assume that the system could be redesigned to include an on-chip controller, and it would operate
with the maximum possible speed reported by the authors for their ALUs [16, 18], i.e., 38 MHz (clock period =
26 ns). We also ignore a substantial input/output overhead reported by the authors, and caused most likely by
the use of an external microcontroller.

In spite of these equalizing measures, our design outperforms the design by Pelzl, Šimka, et al. by a factor
of 9.3 in terms of the execution time for Phase 1, by a factor of 8.6 in terms of the execution time for Phase 2
with the same value of parameter D, and by a factor of 16.1 for Phase 2 with the increased value of D = 210,
not reported by Pelzl/Šimka. The main improvements in Phase 1 come from the more efficient design for a
Montgomery multiplier (a factor of 5 improvement) and from the use of two Montgomery multipliers working in
parallel (a factor of 1.9 improvement). An additional smaller factor is the ability of an adder/subtractor to work
in parallel with both multipliers, as well as the higher clock frequency.
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Table 9. Results of the FPGA implementations (resources and timing for one ECM unit per FPGA device, execution time of
Phase 1 and Phase 2 for 198-bit numbers N, B1 = 960, B2 = 57000, D = 210)

Results Virtex Virtex II Spartan 3 Spartan 3E Virtex 4

XCV2000E-6 XC2V6000-6 XC3S5000-5 XC3S1600E-5 XC4VLX200-ll

Resources with

one ECM unit

- CLB slices 3102 (16%) 3197 (9%) 3322 (10%) 3463 (23%) 3224 (4%)

- LUTs 4933 (13%) 5025 (7%) 5134 (8%) 5086 (17%) 5047 (3%)

- FFs 3129 (8%) 3102 (5%) 3130 (5%) 3105 (11%) 3077 (2%)

- BRAMs 2/160 2/144 2/104 3/336 3/336

Maximum 7 10 10 4 27

number of

ECM units

per FPGA

device

Technology 0.15/0.12 µm 0.15/0.12 µm 90 nm 90 nm 90 nm

Cost of an $1230 $2700 $130 $35 $3000

FPGA devicea

Maximum 54 MHz 123 MHz 100 MHz 93 MHz 135 MHz

clock

frequency for

one ECM unit

Time for 62.8 ms 27.6 ms 33.9 ms 36.5 ms 25.2 ms

Phase 1 and 2

# of ECM 111 ECM 362 ECM 295 ECM 109 ECM 1073 ECM

computations operations/s operations/s operations/s operations/s operations/s

per second

(with the

maximum

number of

ECM units)

# of ECM 9 ECM 13 ECM 227 ECM 311 ECM 36 ECM

computations operations/s operations/s operations/s operations/s operations/s

per second per $100 per $100 per $100 per $100 per $100

per $100

(with the

maximum

number of

ECM units)

acost per unit for a batch of 10000+ devices
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Table 10. Comparison of the execution time between 2.8 GHz Xeon Pentium 4 (w/512KB cache) and two types of FPGA devices
Virtex II XC2V6000-6 and Spartan 3 XC3S5000-5 (198-bit number N, B1 = 960, B2 = 57000, D = 210, maximum number of ECM
units per FPGA device)

Virtex II Spartan 3 Pentium 4 Pentium 4 Pentium 4

XC2V6000-6 XC3S5000-5 (testing (GMP-ECM (GMP-ECM

program + with Phase 1 with all

GMP optimizations optimizations

library) turned off turned on)

Clock 123 MHz 100 MHz 2.8 GHz

frequency

No. of parallel 10 10 1

ECM computations

Time of Phase 1 13.6 ms 16.7 ms 18.3 ms 13.5 ms 11.3 ms

Time of Phase 2 14.0 ms 17.2 ms 18.6 ms 13.5 ms 13.5 ms

Time of 27.6 ms 33.9 ms 36.9 ms 27.0 ms 24.8 ms

Phase 1 & Phase 2

# of Phase 1 735 600 55 74 89

computations per

second

# of Phase 2 714 580 54 74 74

computations per

second

# of Phase 1 & 2 362 295 27 37 40

computations per

second

One might expect that such improvement in speed comes at the cost of substantial sacrifices in terms of the
circuit area and cost. In fact, our architecture is bigger, but only by a factor of 2.7 in terms of the number of CLB
slices. Additionally, the design reported in [16, 18] has a number of ECM units per FPGA device limited not by
the number of CLB slices, but by the number of internal on-chip block RAMs (BRAMs). If this constraint was
not removed, our design would outperform the design by Pelzl/Šimka in terms of the amount of computations
per Xilinx Virtex 2000E device by a factor of 9.3 · 2.33 = 22 for Phase 1 and 37.5 for Phase 2. If the memory
constraint is removed, the product of time by area still improves compared to the design by Pelzl and Šimka by
a factor of 9.3/2.7 = 3.4 for Phase 1 and 6.0 for Phase 2.

In Table 9, we show the results of porting our design to five families of Xilinx FPGAs. For each family, a
representative device is selected and used in our implementations. For each ECM device, we determine the exact
amount of resources needed for a factoring circuit with one ECM unit, the maximum number of ECM units per
chip, the maximum clock frequency, and then the maximum number of ECM computations (Phase 1 and Phase
2) per unit of time. Finally, we normalize the performance by dividing it by the cost of a respective FPGA
device. From the last row in the table one can see that the low-cost FPGA devices from the Spartan 3 and
Spartan3E device families outperform the high-performance devices, such as Virtex II and Virtex 4 by a factor
of about 17.5 and 8.6 respectively, and thus are more suitable for cost effective code breaking computations.
Additionally, as expected, the newest generations of devices, Spartan 3E and Virtex 4, have the best results, in
their respective categories, in terms of the amount of computations per unit of cost.

In Table 10, we compare the execution time of Phase 1 and Phase 2 between the two representative FPGA
devices and a highly optimized software implementation (GMP-ECM) running on Pentium 4 Xeon, 2.8 GHz.
GMP-ECM is one of the most powerful software implementations of ECM and contains multiple optimization
techniques for both Phase 1 and Phase 2 [7, 15]. For GMP-ECM we consider two cases, one with all optimizations
enabled, and second with the Lucas chain optimization for Phase 1 (see Section 2.7) disabled. Additionally, we
run our own test program in C that mimics almost exactly the behavior of hardware, except for using calls to the
multiprecision GMP library for the low level operations, such as modular multiplication and addition. One can
see that the algorithmic optimizations matter, and reduce the overall execution time for Phase 1 from 18.3 ms
to 11.3 ms (38%), and Phase 2 from 18.6 ms to 13.5 ms (27%). In particular, GMP-ECM Phase 1 optimizations
(Lucas chains [7]) reduce the execution time of Phase 1, for our specific choice of parameters, by a factor of 16%.
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Interestingly, the execution time for an ECM unit running on Virtex II, 6000 is almost identical to the
execution time of GMP-ECM on a Pentium 4 Xeon. At the same time, since this FPGA device can hold
up to 10 ECM units, its overall performance is about 10 times higher for combined Phase 1 and Phase 2
computations. However, the current generation of high-end FPGA devices cost about 10 times as much as
comparable microprocessors. Therefore, the advantage of Virtex II over Pentium 4 disappears when cost is
taken into account. In order to get an advantage in terms of the performance to cost ratio, one must use a
low-cost FPGA family, such as Xilinx Spartan 3. In this case, the ratio of the amount of computations per chip
is about 7.4 in favor of the biggest Spartan 3. Additionally this device is actually cheaper than a state-of-the-art
microprocessor, so the overall improvement in terms of the performance to cost ratio exceeds a factor of 10.

5. SOFTWARE EXPERIMENTS

The two graphs, shown in Figure 9 and 10, illustrate the probability of success for software experiments of ECM
with Pentium 4 Xeon, applied to 200-bit numbers with 40-bit prime factors. For these experiments, we define
“success” in two different ways: Firstly, we call a trial successful, if p1, one particular 40-bit prime factor of our
candidate number N = p1p2p3p4p5, is found. Secondly, we impose a more stringent requirement that all five
prime factors need to be found independently and the number completely factored. This is illustrated in Figures
9 and 10, for the following choices of B1 and B2.

trial B1 B2

1 800 32470
2 960 57000
3 1100 51114

The parameters for trial 2 are taken from Šimka, et al [18] and the values of B1 in trials 1 and 3 are
chosen for comparison. In those cases, the value of B2 is determined as in GMP-ECM by the relation B2 =(

11
6 B1

)1.424828748
. From the graphs, it can be deduced that the following average numbers of curves are needed

to achieve probabilities of success of 50%, 90%, 95% and 99%.

p factor p1 found All factors found
B1 800 960 1100 800 960 1100
50% 10 8 8 28 22 21
90% 33 26 24 57 42 38
95% 42 34 29 69 50 43
99% 62 48 44 87 69 52

These are, of course, experimental values, based on a sample of 1000 test numbers, and therefore they are subject
to sampling error. However, the results clearly show that the probability of success (for both definitions) increases
rapidly to about 90% with the number of curves. Beyond 90%, it becomes more costly to further improve the
success rate.

It is worthwhile noting that Graphs 1 and 2 can be explained in terms of certain exponential functions. That
is, they are approximated by the following equations,

Equation of Graph 1 : y = 100(1− (1− λ)x),

Equation of Graph 2 : y = 100(1− (1− λ)x)5,

for some constant λ. Recall that, in our experiments, 200-bit integer N is a product of 40-bit random primes pi,
i.e., N = p1p2p3p4p5. Intuitively, λ can be considered as the probability that a fixed pi is found after one try
of ECM with one curve. Our experiments indicate that, while λ is dependent on B1 and B2, it is independent
of each value of pi. We used the following three pairs of (B1, B2) = (800, 32470), (960, 57000), (1100, 51114) for
experiments. If we use x curves which are chosen randomly, the probability that p1 (or any fixed pi) is not
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Figure 9. Percentage of the numbers of curves for which the factor p1 found as a function of the number of curves tried

Figure 10. Percentage of the numbers for which all factors were found as a function of the number of the curves tried
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found is (1− λ)x. Thus 1− (1− λ)x is the probability that p1 is found at least once among the x tries of ECM,
and y = 100(1 − (1 − λ)x) gives the percentage of the numbers for which the factor p1 is found when x curves
are used. Also, since N is a product of five random primes pi of the same size, the probability that all of pi

are at least once found among the x tries of ECM is (1 − (1 − λ)x)5. Thus y = 100(1 − (1 − λ)x)5 gives the
percentage of the numbers for which all the five factors pi are found when x curves are used. For the three values
of B1 = 800, 960, 1100, it seems that λ = 0.071, 0.088, 0.092 give resonably good approximations for the graphs.

6. CONCLUSIONS AND FUTURE WORK

A novel hardware architecture for the Elliptic Curve Method of factoring has been proposed. The main differences
as compared to an earlier design by Pelzl, Šimka, et al. [16, 18], include the use of an on-chip optimized controller
for Phase 1 and Phase 2 (in place of an external controller based on an ARM processor), substantially smaller
memory requirements, optimized architecture for the Montgomery multiplier, the use of two (instead of one)
multipliers, and the ability of all arithmetic units (2 multipliers and one adder/subtractor) to work in parallel.
When implemented on the same Virtex 2000E-6 device, our architecture has demonstrated a speed-up by a
factor of 9.3 for ECM Phase 1 and 16.1 for ECM Phase 2, compared to the design by Pelzl/Šimka, et al. At the
same time, memory requirements have been reduced by a factor of 22, and the requirements for CLB slices have
increased by a factor of 2.7. If the same optimizations regarding the memory usage and the use of an internal
controller were applied to the design by Pelzl/Šimka, our architecture would still retain an advantage in terms
of the performance to cost ratio by a factor of 3.4 for Phase 1 and 6.0 for Phase 2.

Our architecture has been implemented targeting four additional families of FPGA devices, including high-
performance families (Virtex II and Virex 4), as well as low-cost families (Spartan 3 and Spartan 3E). Our
analysis revealed that within the two most recent generations of FPGA families (older: Spartan3, Virtex II; and
the most recent: Spartan 3E, Virtex 4), the low-cost devices outperform the high-performance devices in terms
of performance to cost ratio by a factor greater than 8.

We have also compared the performance of our hardware architecture implemented using Virtex II XC2V6000-
6 and Spartan 3 XC3S5000-5 with an optimized software implementation running on a Pentium 4 Xeon, with a
2.8 GHz clock. Our analysis shows that the high performance FPGA device outperforms the same generation
microprocessor by a factor of about 10, but looses its advantage when the cost of both devices is taken into
account. On the other hand, the low-cost FPGA device achieves over an order of magnitude advantage over
the same generation Pentium 4 processor in terms of the performance to cost ratio. This feature makes low-
cost FPGA devices an appropriate basic building block for cost-optimized hardware for breaking cryptographic
systems, which is consistent with the conclusions of other research groups reported earlier in the literature [26].

Future research directions of our group include the comparison of software and FPGA implementations of
ECM with the standard-cell ASICs, estimation and optimization of the time taken by ECM when used as a
part of the Number Field Sieve, and porting of our design to two selected general-purpose high-performance
reconfigurable computers [27, 28, 30]. As a part of this last project, we will investigate the advantages and
drawbacks of using high-level programming languages, such as C and Mitrion-C [27, 29] to describe the behavior
of complex cryptanalytical systems in hardware.
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