Implementing a Sieving Algorithm
on a Dynamic Reconfigurable Processor
(Extended Abstract) *

Takeshi Shimoyama, Tetsuya Izu, and Jun Kogure

FUJITSU Limited,
4-1-1 Kamikodanaka, Nakahara-ku, Kawasaki, 211-8588, Japan
{shimo-shimo,izu,kogure}@jp.fujitsu.com

Abstract. This extended abstract proposes an efficient implementation
of the sieving step in the number field sieve method of integer factoriza-
tion on a dynamic reconfigurable processor “DAPDNA-2". The pipeline
method and the bucket sorting method for the line sieving will be dis-
cussed.

Keywords: hardware implementation, dynamic reconfigurable proces-
sor, DAPDNA-2, integer factoring, sieving algorithm

1 Introduction

The integer factoring problem is one of the most fundamental topics in the
area of cryptology since the hardness of this problem assures the security of
some public-key cryptosystems. The number field sieve method (NFS) [7] is
known as the most efficient algorithm for factoring large composite integers. In
2003, Franke et al. factored a 576-bit integer (RSA576) by NFS, which is the
current world record of the factorization. Since the complexity of NFS grows sub-
exponential with regard to the integer size, it is widely believed that factoring
1024-bit integers is infeasible in next 10 years by the same software approach. It
is natural to consider a special hardware dedicated to integer factorizations.

NF'S consists of four major steps, the polynomial selection step, the sieving
step, the linear algebra step, and the square root step. Among them, the sieving
step and the linear algebra step are theoretically and experimentally dominant
steps. In 2001, Bernstein employed a special hardware design for the linear al-
gebra step based on a sorting algorithm with standard ASIC architectures [2].
Then Lenstra et al. enhanced the device by using a routing algorithm [9]. Geisel-
mann and Steinwandt applied these ideas to the sieving step and proposed two
designs [4, 5]. On the other hand, Shamir and Tromer improved an optical siev-
ing device TWINKLE [10] into a novel ASIC-based hardware TWIRL [11]. By
these contributions, it is expected that the linear algebra step is easily processed
compared to the sieving step.

* This work is financially supported by a consignment research from the the National
Institute of Information and Communications Technology (NICT), Japan.

However, all these designs are just theoretical; no experimental results have
been known up to the present. One of the major reason may be that designing
and manufacturing such devices require a quite a few amount of money and time.
In this extended abstract, we proposed an efficient implementation of the sieving
step on a dynamic reconfigurable processor “DAPDNA-2” [6]. This processor
has two features: one is flexibility of the programming (like usual PC) and the
other is high-performance of the process (like FPGA). The performance is not
as excellent as that of ASIC, however, it is quite suitable for test hardware
implementations. Considering such features of DAPDNA-2, we discuss the line
sieving of the number field sieve method. Since it is just the beginning of the
project, we only deal with these basic algorithms. Discussions and optimizations
of more sophisticated algorithms will be future work.

2 Dynamic Reconfigurable Hardware “DAPDNA-2”

A dynamic reconfigurable processor DAPDNA-2 is introduced and manufactured
by IPFlex [6]. A chip DAPDNA-2 has dual-core processors DAP and DNA.
DAP is a high-performance RISC processor core, and DNA is a two-dimensional
array of 376 processing elements (PEs) (see Figure 1). DAPDNA-2 has a circuit
configuration within a chip and able to switch the configuration dynamically,
allowing multiple applications. This processor enables to deal with processes
implemented on multiple chips conventionally on a single chip.

DAPDNA-2 can be configured to provide the optimal circuitry for a par-
ticular application. This configuration takes place not only when the system is
initialized, but can also occur dynamically in a single clock cycle [operating at
166MHz] while the system is running, to meet the instantaneous needs of the ap-
plications implemented by the system. DNA configuration data are stored in four
banks, one foreground bank, three background banks. Additional configuration
data can be loaded from external memory.

3 Sieving on DAPDNA-2

Let N be a large composite integer we are going to factor. Let f(z) € Z[z] be an
irreducible polynomial and m be an integer such that f(m) =0 (mod N). We
suppose that the polynomial f(z) and the integer m are given by certain means
for the input V. Main purpose of the sieving step is to collect a huge number of
relations from a given domain [—H,, H,] x [1, Hy] C Z>. Here a pair (a,b) € Z>
is called the relation if it satisfies all of the following conditions:

— ged(a,b) =1,
— Nr(a,b) = |a+ bm| is Bgr-smooth for a given parameter By,
— Na(a,b) = |(=b)3ef f(—a/b)| is Ba-smooth for a given parameter Bj.

An integer z is called y-smooth if all prime factors of z is less than or equal to y.
We also suppose that a set of primes less than or equal to Br (Ba) is prepared
as the factor base.

Fig. 1. Block Diagram of DAPDNA-2

. rorm— ' DNA Matrix
: H el [l fsl| ==l
L =le=l [l T
LiH| E|| PE| - E PE
T | 2 g |
<:§*> Debug Interface % Dg:’,lvll)aEt:)ix g];)‘::t <“-_§_> g : : i i
i RISC % (= e Cég U= __
core H H[eE][oE] e E [ez]
; % | PE|| PE| e E PE
: L“f;:'::‘" ; ”:e h LoadBuffer | StoreBuffer g g i
T 1T T O T _% -------- -
| Fast Swithing Bus | 4] E‘ﬁﬁ ________ [
FU -, U [| [
| [mterface Interface oA heriphera [[
' i —|
R S T Yo | ol

Algorithm 1 Line sieving

1: for b+ 1 to Hy
set Sla] to log Nr(a,b) for all a
for prime p < 2 to Br
compute the sieving point a > —H,
while a < H,
Sla] < S[a] —logp
a<—a+p

B A R

3.1 Pipeline Method

Algorithm 1 is a straight-forward algorithm for the sieving step (line sieving).
When we process Algorithm 1 on usual PC by software, step 7 in Algorithm 1
is dominant since simultaneous memory access cannot be processed in general.
On the other hand, simultaneous memory access can be processed to different
RAM-PE in the DNA matrix in DAPDNA-2 independently. Using this property
of DAPDNA-2, we implement and optimize step 7 in Algorithm 1 as in the
followings.

Remark. DNA matrix has 32 RAM-PEs. We regard these RAM-PEs as a se-
quential memory space. Sieving length is chosen to fit this memory space for
each sieving.

In order to process the line sieving efficiently, we use the pipeline method for
the line sieving. A model of the pipeline method is shown in Figure 2. Suppose
the sieving points a and the information on log p for each prime p are stored in

Fig. 2. Pipeline Algorithm

DNA Matrix

RAM3 next
step

factor base
(SDRAM)

icounter0 icounterl icounter2 5Counter3§

Algorithm 2

— On RAMO
1. When ENDO flag is “off” and Counter0 is passive,
set Counter0 as active,
read a data (p,a,logp) from the factor base in SDRAM, and
subtract log p.
2. When access address is beyond RAMO and subtractions are finished,
set Counter0 as passive and ENDO flag as “on”.
— On RAM1,
1. When ENDO flag is “on”, END1 flag is “off” and Counterl is passive,
set Counterl as active and ENDO flag as “off”, and
subtract log p.
2. When access address is beyond RAM1 and subtractions are finished,
set Counterl as passive and END1 flag as “on”.
— On RAM2, process as on RAMI.
— On RAMS,
1. When END2 flag is “on” and Counter3 is passive,
set Counter3 as active, END2 flag as “off”, and
subtract log p.
2. When access address is beyond RAMS and subtractions are finished,
set Counter3 as passive.

SDRAM. In Figure 2, RAMO, ..., RAM3 is an access unit in the pipeline. Each
RAM: (i =0,...,3) is not limited to a single RAM-PE, but also a combination
of some RAM-PEs. Counteri (i = 0,1,2,3) implies a memory address to be
subtracted by log p for RAMi. Here Counteri is active when the subtraction by
log p is processed, or passive otherwise. ENDi (i = 0,1,2) is a 1-bit flag which
indicates whether the sieving is finished (“on”) or not (“off”) for RAM.
Algorithm 2 shows a concrete algorithm for the pipeline method. In order to
process the pipeline sieving efficiently, the next factor base should be read just
after finishing the subtractions in RAMO. To do so, Counterl should be passive
and END1 flag should be “off” when ENDO flag is “on”. Conversely, when ENDO
flag is “on”, if Counterl is active or END1 flag is “on”, new factor base is not

Algorithm 3

1: Let all buckets empty
2: for prime p in factor base

3: Compute a > —H, as the first sieving point
4: while a < H,

H,
5: Store (a,logp) to the {%J -th bucket
6: a<—a+p

Algorithm 4

1: for all buckets that are numbered i (0 < ¢ < n)
2: for all (a,logp) in the bucket i
3: S[a] « S[a] +logp

read and pipeline stall would be occurred. To avoid such pipeline stalls, sieving
processes for a factor base in every RAM;i should be finished before sieving
processes for the next factor base will be finished.

In general, the number of subtractions by logp for a fixed sieving area is
determined by the size of primes in the factor base and thus the number would
be large when p is small. So the pipeline is efficient if a factor base is lined in
descending order.

In addition, when the size of a prime in a factor base is larger than the size
of the sieving area (for example, a sum of RAM: (i = 0,...,3) in Figure 2), sub-
tractions by log p are not always processed and pipelining become meaningless.
Thus it would be efficient to adapt pipelining for primes whose sizes are smaller
than the sieving size. In order to deal with larger primes, the bucket sorting
method for the sieving proposed by Aoki and Ueda will be applied in the next
section.

3.2 Bucket Sorting Method

The pipeline method described in the previous section was efficient for only
small primes. In order to process the line sieving better than the pipeline method,
namely for larger primes, Aoki and Ueda proposed a new algorithm using bucket
sorting [1]. The algorithm that cleverly uses the cache memory on PC, accelerates
the memory update processes in the sieving step to several times faster than that
of the simple log p updating. Algorithm 3 throws the pairs (a, log(p)) of a sieving
point and an update value in the buckets, and Algorithm 4 updates array S[a]
using the elements in the buckets. The sieve areais —H, < a < H,. Let n be the

n, .
number of buckets, and r be [—SW, where ng denotes the number of elements in
n

S. For the detail of the algorithm, please refer to [1].

Fig. 3. Bucket Sort Sieving

DNA Matrix

Sieve Areal Sieve Areal Sieve Area2 Sieve Area3

iro[r1lr2[r3} {rolr1lR2[R3! iR0IRI[R2[R3! iRO[R[R2]RS!

P 1 F
//_\,W
J1 1 1 1

factor baseq

(SDRAM) L (a/log) \(iloq) -
| IS I I Y N Iy | /'/l

el

Bucket0 Bucketl Bucket2 Bucket3

Our sieving process consists of the following three parts;

1. computation of sieve point using bucket sort (bucket sort part),
2. memory update by using sorted sieving points (sieving part),
3. comparing the value in the memory and threshold value. (check part).

Bucket sort part

Figure 3 shows an outline of the implementation of the bucket sorting method
on DAPDNA-2. This figure describes the pre-process by using the bucket sort
for 4 sievings at a time. Area0,...,Area3 are virtual memory areas with size ng
for each, and Areaj is divided into inner virtual memory areas Rj (j =0, ..., 3).
Bucket0,. . . ,Bucket3 collects information on the subtractions by logp corre-
sponding to Area,. .. ,Area3. Each bucket is divided into 4 areas corresponding
to RO,...,R3. This partitioning of the bucket is aimed for the parallelization of
the sieving part.

For DNA matrix, we can use four 32-bit input buffers (LDB) and output
buffers (STD). Each input and output buffers can accessed to the SDRAM in
parallel. Then, the following procedures are executed by the four parallel pro-
cessing.

Assume each factor base (p, a,log(p)) stored in SDRAM as inputs of bucket
sort part. Each pairs (a,log(p)), named “packets”, of sieving points calculated
from the first sieving points and p, and log value log(p) are classified by us-
ing bucket sort algorithm. Each packet is stored in one of Bucket0,. .. ,Bucket3

according to the sieving number (0,...,3) and RAM to be effected. The next
section shows a concrete sieving algorithm with packets stored in buckets.

Sieving part

In the inside of DNA Matrix, 32 pieces of 16KByte RAM element exist. We
assign one byte to each sieve memory, then the log values of 32 - 16 - 210 = 219
sieve points can be calculated at the maximum. Each RAM element can perform
only update of one value at once, however, if the RAM element physically differ,
independent and parallel operations are possible.

This part is consisted by the procedure in four parallel computations as same
as in bucket sort part. The sieve position sorted in each partition in the Bucket0
for each RAMO,...,RAMS3 are loaded into the four input buffers of DNA matrix.
Then the memory updates are performed in parallel.

Check part

In this part, after the sieving process for all factor base, we check whether each
updated value in the memory S[a] is larger than some threshold value, and output
the sieve points satisfied such condition. The threshold values are obtained by
linear interpolation from a few number of the sample points calculated correctly
in advance.

4 Conclusion

This extended abstract proposes an efficient implementation of the sieving step
in the number field sieve method of integer factorization on a dynamic recon-
figurable processor “DAPDNA-2”, by combining the pipeline method for small
primes and the bucket sorting method for larger primes.

We have a lot of problems to be discussed. First of all, the lattice sieving
for the sieving step should be discussed immediately. We have not applied the
large prime variations. In this case, how to distinguish real relations and pseudo
relations would be a serious problem. In addition comparisons to sophisticated
algorithms for the sieving step such as TWIRL [11] and Geiselmann-Steinwandt’s
device [5]. Furthermore, we are planning to implement (some) algorithms on
DAPDNA-2. We hope we can report these results near in future.

References

1. Kazumaro Aoki and Hiroki Ueda, Sieving Using Bucket Sort, Advances in Cryptol-
ogy ASTACRYPT 2004, Vol. 3329. of Lecture Notes in Computer Science (LNCS),
Springer-Verlag, 2004.

2. Daniel J. Bernstein. Circuits for integer factorization: a proposal. preprint, 2001.

3. J. Franke, et al. RSA-576. Email announcement, December 2003.

10.

11.

Willi Geiselmann and Rainer Steinwandt. A dedicated sieving hardware. In Yuliang
Zheng, editor, Advances in Cryptology — PKC 2003, Vol. 2567 of Lecture Notes in
Computer Science (LNCS), pp. 254-266, Springer-Verlag, 2003.

Willi Geiselmann and Rainer Steinwandt. Yet another sieving device In Tatsuaki
Okamoto, editor, Topics in Cryptology — CT-RSA 2004, Vol. 2964 of Lecture Notes
in Computer Science (LNCS), pp. 278-291, Springer-Verlag, 2004.

IPFlex, DAPDNA Architecture, 2004.
(http://www.ipflex.com/en/El-products/dd2Arch.html)

Arjen K. Lenstra and H.W. Lenstra, editors. The development of the number field
sieve, Vol. 1554 of Lecture Notes in Mathematics (LNM), Springer-Verlag, 1993.
Arjen K. Lenstra and Adi Shamir. Analysis and optimization of the TWINKLE
factoring device. In Bart Preneel, editor, Advances in Cryptology - EUROCRYPT
2000, Vol. 1807 of Lecture Notes in Computer Science (LNCS), pp. 35-52. Springer-
Verlag, 2000.

Arjen K. Lenstra, Adi Shamir, Jim Tomlinson, and Eran Tromer. Analysis of Bern-
stein’s circuit. In Yuliang Zheng, editor, Advances in Cryptology — ASIACRYPT
2002, Vol. 2501 of Lecture Notes in Computer Science (LNCS), pp. 1-26, Springer-
Verlag, 2002.

Adi Shamir. Factoring large numbers with the TWINKLE device (extended ab-
stract). In Cetin Kaya Ko¢ and Christof Paar, editors, Cryptographic Hardware
and Embedded Systems — CHES 1999, Vol. 1717 of Lecture Notes in Computer
Science (LNCS), pp. 2-12, Springer-Verlag, 1999.

Adi Shamir and Eran Tromer. Factoring large numbers with the TWIRL device. In
Dan Boneh, editor, Advances in Cryptology — CRYPTO 2003, Vol. 2729 of Lecture
Notes in Computer Science (LNCS), pp. 1-26, Springer-Verlag, 2003.

