Cracking Unix passwords using
FPGA platforms

Nele Mentens, Lejla Batina,

Bart Preneel, Ingrid Verbauwhede
COSIC, Katholieke Universiteit Leuven
SHARCS
25.02.2005

Outline

Time-memory trade-off
Unix password hashing

Time-memory trade-off for Unix password
nashing

mplementation options and results
-uture work
Conclusion

0
NG

Time-memory trade-off

Encryption C = E,(P) X

Fixed and known plaintext KC
= Ex(P) is a one-way function

Attack scenario: find K for given C

Straightforward methods:

— exhaustive key search
— precomputation table with all (K,C)-pairs

Time-memory trade-off (Hellman, 1980):
— less time than exhaustive key search
— less memory than precomputation

N
g

Time-memory trade-off

Two functions are defined:
« g:{0,1} — {0,1}* called reduction function

maps a ciphertext to a key. C _,| g |_, K
- f:{0,1} — {0,1}* or f(K) = g(Ex(P))
maps a key to a key.

Time-memory trade-off

Now a chain of length t can be constructed:

P f P f
F=l-=-=-====- ! r=f--=-=-=-=--- 1|
| |
Ko i | Co@K1 .'i 497 sKyeec K,
| e e e e e e oo I | e e e e e e oo I
or

Time-memory trade-off

Original idea from Hellman:

* m chains of length t

* Only the start point (SP) and the end point
(EP) of a chain are stored in a table.

0
NG

Time-memory trade-off

Preparation of the attack (off-line part):

« Start from a key and apply a repeated sequence
of encryptions and reduction functions.

* The length of this sequence (chain) is t.

 Start from another key and do the same.

* Repeat this until m chains have been computed.
« Create a table with m start point-end point pairs.

+
&n

:

§
4151:‘

"

s

Time-memory trade-off

Attack (on-line part):

» Start from the given ciphertext C, and do the
chain computations (repeated sequence of
encryptions and reduction functions) until there
IS a match with the end point of a chain.

« Start from the start point of this chain and
compute all intermediate ciphertexts until C, is
found. The key just before C, is the right one.

+
W
]

§
4151:‘

"

s

Time-memory trade-off

Attack example:

« Start from C_ until
EP4 is found.

e Start from SP4 until

C, is found.

» K, of chain 4 is the
key we need.

EP1
EP2
EP3
EP4
EP5
EP6

SP1
SP2
SP3
SP4
SP5
SP6
SP7 EP7
SP8 EP8

\ /

stored pairs of keys

C gk Kk Atk ik Atk ik K =EP4
SP4etC | gbK AEFC, gk Ks{EFCo=C,

Time-memory trade-off

Improvements:

« distinguished points (Rivest, Borst et al., Stern):
only store end points with a special property e.qg.
last 20 bits are O

= reduced number of memory accesses
but variable length chains

 rainbow tables (Oechslin): use a different
reduction function in every iteration

— decreased probability of merging :
chains f %**a

Time-memory trade-off

Cost for success probability 86% for 1
rainbow table with m = 22¥3 gnd t = 23

« Precomputation: time 2% and memory 223
« Recovery of one key: time 22«3

Improved analysis based on full cost: see
Michael Wiener's talk

0
NG

Unix password hashing

The Unix password system uses 25 modified DES
blocks.

64 zeros

: plaintext
password =» ™
salt =» DES l
d * k
password =» e .
salt =» DES Y
T >> 25X [)EEE;
: l
password =p
salt =» DES ,

' ciphertext
hash

Unix password hashing

/etc/passwd:
—write-protected file
—contains username, salt and hash
—data are stored as ASCII characters

0
NG

Time-memory trade-off for
Unix password hashing

K, = password — assume k=48
P = 64 zeros
E = 25 modified DES blocks :
C, = hash f %‘"a
. . i g s
g = reduction function % 8
s

Implementation options and results

Options for the reduction functions:
S-boxes, xor functions, bit swaps

« All options have low hardware complexity.

« For rainbow tables we need one general
reduction function from which different
reduction functions can be derived.

 Qur reduction function is an xor with a counter,
which has a different value for each reduction
function. ‘"ﬂ%

§
4151:‘

"

s

Implementation options and results

Generation of the tables (off-line part):

* Implementation platform:
BEE2 designed at UC Berkeley
 Variant of time-memory trade-off:
rainbow tables

« Generation of start points will be done in the
FPGA using a counter. The counter in the
reduction function can be re-used for this
purpose.

+

W\
2
" 5&5

"

s

Implementation options and results

The BEE2 platform:

One BEE2 module consists of five Virtex-ll-
Pro-70 FPGAs.

Each BEE2 module has 20 GB DDR-RAM and
a 10 Gb/s ethernet connector.

The platform is modular. Currently it consists
of 2 modules, but 10 more are being produced.

The platform can handle frequencies up to
200-300 MHz.

The cost per module is + $7500 f‘”ﬂ%

-
g
Fr

:
%
NG/

Implementation options and results

SP L . .
pipelined implementation
password 64-bit hash
A
25DES /H\ mmmﬁ
hash //,/”/ a
i 5 |
- 5 | e| bit—wise
o
counter —E%] S ~< . YOR
~ o O
s
~ \
T eee T,
EP ~

56-bit image

Implementation options and results

Some numbers on the precomputation part:

Computation for one salt takes 8 days on 1
BEE2 module.

Precomputation for all salts in one year
requires 92 modules.

Memory complexity per salt is
2

23" 414 Bytes = 56 GBytes

N
g

Implementation options and results

Some numbers on the on-line part:

 Recovering a password using one Virtex-4
takes
216(216 _1)

1.5us < Thour

« Using 25 pipelining steps it will only take a
few minutes.

IWDHE

s,
i

B,

i
R
oy

Implementation options and results

Comparison with other implementations:

platform algorithm speed(enc/s)
Biham, 1997 |64-bit Alpha |56-bit DES 2M
computer
UCL, 2002 Virtex1000 40-bit DES 66M
Oechslin, P4, 1.5 GHz, |56-bit DES 0.7M
2003 500 MB RAM
this work BEE?2 25 x 56-bit 100M

modified DES

Future work

Perform the attack for one salt
Optimize the choice of parameters
Examine how many tables would be
optimal

Try this on PlayStation 3

Conclusions

 FPGA implementation of the Unix
password system

 FPGA creates the table inputs for the off-
line part of the time-memory trade-off

 Decisions need to be made on other
aspects of the attack

0
NG

