
Cracking Unix passwords using
FPGA platforms

Nele Mentens, Lejla Batina,
Bart Preneel, Ingrid Verbauwhede

COSIC, Katholieke Universiteit Leuven
SHARCS

25.02.2005

Outline

• Time-memory trade-off
• Unix password hashing
• Time-memory trade-off for Unix password

hashing
• Implementation options and results
• Future work
• Conclusion

Time-memory trade-off

• Encryption C = EK(P)
• Fixed and known plaintext

� EK(P) is a one-way function
• Attack scenario: find K for given C
• Straightforward methods:

– exhaustive key search
– precomputation table with all (K,C)-pairs

• Time-memory trade-off (Hellman, 1980):
– less time than exhaustive key search
– less memory than precomputation

E

P

K C

Time-memory trade-off

Two functions are defined:
• g: {0,1}n � {0,1}k called reduction function

maps a ciphertext to a key.

• f: {0,1}k � {0,1}k or f(K) = g(EK(P))
maps a key to a key.

gC K

gC K2EK1

fP

Time-memory trade-off

Now a chain of length t can be constructed:

or

fK1 K2fK0 Kt

gC0 K1EK0

fP

gC1 K2E

fP

Kt

Time-memory trade-off

Original idea from Hellman:

• m chains of length t
• Only the start point (SP) and the end point

(EP) of a chain are stored in a table.

Time-memory trade-off

Preparation of the attack (off-line part):

• Start from a key and apply a repeated sequence
of encryptions and reduction functions.

• The length of this sequence (chain) is t.
• Start from another key and do the same.
• Repeat this until m chains have been computed.
• Create a table with m start point-end point pairs.

Time-memory trade-off

Attack (on-line part):

• Start from the given ciphertext Ca and do the
chain computations (repeated sequence of
encryptions and reduction functions) until there
is a match with the end point of a chain.

• Start from the start point of this chain and
compute all intermediate ciphertexts until Ca is
found. The key just before Ca is the right one.

Time-memory trade-off

Attack example:
• Start from Ca until

EP4 is found.
• Start from SP4 until

Ca is found.
• K2 of chain 4 is the

key we need.

gC1 K1ESP4 gC2 K2E C3=CaE

KbfKa
gCa Kcf Kdf Kef Kf=EP4f

SP1
SP2
SP3
SP4
SP5
SP6
SP7
SP8

EP1
EP2
EP3
EP4
EP5
EP6
EP7
EP8

stored pairs of keys

Time-memory trade-off

improvements:
• distinguished points (Rivest, Borst et al., Stern):

only store end points with a special property e.g.
last 20 bits are 0

� reduced number of memory accesses
but variable length chains

• rainbow tables (Oechslin): use a different
reduction function in every iteration

� decreased probability of merging
chains

Time-memory trade-off

Cost for success probability 86% for 1
rainbow table with m = 22k/3 and t = 2k/3

• Precomputation: time 2k and memory 22k/3

• Recovery of one key: time 22k/3

Improved analysis based on full cost: see
Michael Wiener’s talk

Unix password hashing
The Unix password system uses 25 modified DES
blocks.

DES

DES

DES

64 zeros

password

password

password

hash

salt

salt

salt

DES

plaintext

key

ciphertext

salt
25x

Unix password hashing

/etc/passwd:
– write-protected file
– contains username, salt and hash
– data are stored as ASCII characters

Time-memory trade-off for
Unix password hashing

gC0 K1EK0

fP

gC1 K2E

fP

Kt

Ki = password – assume k=48
P = 64 zeros
E = 25 modified DES blocks
Ci = hash
g = reduction function

Implementation options and results

Options for the reduction functions:
S-boxes, xor functions, bit swaps

• All options have low hardware complexity.
• For rainbow tables we need one general

reduction function from which different
reduction functions can be derived.

• Our reduction function is an xor with a counter,
which has a different value for each reduction
function.

Implementation options and results

Generation of the tables (off-line part):

• Implementation platform:
BEE2 designed at UC Berkeley

• Variant of time-memory trade-off:
rainbow tables

• Generation of start points will be done in the
FPGA using a counter. The counter in the
reduction function can be re-used for this
purpose.

Implementation options and results

The BEE2 platform:
• One BEE2 module consists of five Virtex-II-

Pro-70 FPGAs.
• Each BEE2 module has 20 GB DDR-RAM and

a 10 Gb/s ethernet connector.
• The platform is modular. Currently it consists

of 2 modules, but 10 more are being produced.
• The platform can handle frequencies up to

200-300 MHz.
• The cost per module is ± $7500

Implementation options and results

bit−wise
XOR

64−bit hash

56
−b

it
co

un
te

r

56−bit image

25DES

ig

SP

EP

password

hash

counter

pipelined implementation

Implementation options and results
Some numbers on the precomputation part:
• Computation for one salt takes 8 days on 1

BEE2 module.
• Precomputation for all salts in one year

requires 92 modules.
• Memory complexity per salt is

GBytes56Bytes142
48

3
2

=∗

Some numbers on the on-line part:

• Recovering a password using one Virtex-4
takes

• Using 25 pipelining steps it will only take a
few minutes.

Implementation options and results

()
hour1s5.1

2
122 1616

<µ−

Implementation options and results

Comparison with other implementations:

100M25 x 56-bit
modified DES

BEE2 this work

0.7M56-bit DESP4, 1.5 GHz,
500 MB RAM

Oechslin,
2003

66M40-bit DESVirtex1000UCL, 2002

2M56-bit DES64-bit Alpha
computer

Biham, 1997

speed(enc/s)algorithmplatform

Future work

• Perform the attack for one salt
• Optimize the choice of parameters
• Examine how many tables would be

optimal
• Try this on PlayStation 3

Conclusions

• FPGA implementation of the Unix
password system

• FPGA creates the table inputs for the off-
line part of the time-memory trade-off

• Decisions need to be made on other
aspects of the attack

