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Time-memory trade-off

• Encryption C = EK(P)
• Fixed and known plaintext

� EK(P) is a one-way function
• Attack scenario: find K for given C
• Straightforward methods:

– exhaustive key search
– precomputation table with all (K,C)-pairs

• Time-memory trade-off (Hellman, 1980):
– less time than exhaustive key search
– less memory than precomputation
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Time-memory trade-off

Two functions are defined:
• g: {0,1}n � {0,1}k called reduction function

maps a ciphertext to a key.

• f: {0,1}k � {0,1}k or f(K) = g(EK(P))
maps a key to a key.

gC K

gC K2EK1

fP



Time-memory trade-off

Now a chain of length t can be constructed:

or
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Time-memory trade-off

Original idea from Hellman:

• m chains of length t
• Only the start point (SP) and the end point 

(EP) of a chain are stored in a table.



Time-memory trade-off

Preparation of the attack (off-line part):

• Start from a key and apply a repeated sequence
of encryptions and reduction functions.

• The length of this sequence (chain) is t.
• Start from another key and do the same.
• Repeat this until m chains have been computed. 
• Create a table with m start point-end point pairs.



Time-memory trade-off

Attack (on-line part):

• Start from the given ciphertext Ca and do the
chain computations (repeated sequence of
encryptions and reduction functions) until there
is a match with the end point of a chain.

• Start from the start point of this chain and
compute all intermediate ciphertexts until Ca is
found.  The key just before Ca is the right one. 



Time-memory trade-off

Attack example:
• Start from Ca until

EP4 is found.
• Start from SP4 until

Ca is found.
• K2 of chain 4 is the

key we need. 
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Time-memory trade-off

improvements:
• distinguished points (Rivest, Borst et al., Stern): 

only store end points with a special property e.g.
last 20 bits are 0

� reduced number of memory accesses
but variable length chains

• rainbow tables (Oechslin): use a different
reduction function in every iteration

� decreased probability of merging
chains



Time-memory trade-off

Cost for success probability 86% for 1 
rainbow table with m = 22k/3 and t = 2k/3

• Precomputation: time 2k and memory 22k/3

• Recovery of one key: time 22k/3

Improved analysis based on full cost: see
Michael Wiener’s talk



Unix password hashing
The Unix password system uses 25 modified DES 
blocks.
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Unix password hashing

/etc/passwd:
– write-protected file
– contains username, salt and hash
– data are stored as ASCII characters



Time-memory trade-off for
Unix password hashing
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Ki = password – assume k=48
P = 64 zeros
E = 25 modified DES blocks
Ci = hash
g = reduction function



Implementation options and results

Options for the reduction functions:
S-boxes, xor functions, bit swaps

• All options have low hardware complexity.
• For rainbow tables we need one general

reduction function from which different 
reduction functions can be derived.

• Our reduction function is an xor with a counter, 
which has a different value for each reduction
function.



Implementation options and results

Generation of the tables (off-line part):

• Implementation platform:
BEE2 designed at UC Berkeley

• Variant of time-memory trade-off:
rainbow tables

• Generation of start points will be done in the 
FPGA using a counter.  The counter in the 
reduction function can be re-used for this
purpose.



Implementation options and results

The BEE2 platform:
• One BEE2 module consists of five Virtex-II-

Pro-70 FPGAs.
• Each BEE2 module has 20 GB DDR-RAM and 

a 10 Gb/s ethernet connector.
• The platform is modular. Currently it consists

of 2 modules, but 10 more are being produced.
• The platform can handle frequencies up to

200-300 MHz.
• The cost per module is ± $7500



Implementation options and results
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Implementation options and results
Some numbers on the precomputation part:
• Computation for one salt takes 8 days on 1 

BEE2 module.
• Precomputation for all salts in one year 

requires 92 modules.
• Memory complexity per salt is
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Some numbers on the on-line part:

• Recovering a password using one Virtex-4 
takes

• Using 25 pipelining steps it will only take a 
few minutes.

Implementation options and results
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Implementation options and results

Comparison with other implementations:

100M25 x 56-bit 
modified DES

BEE2  this work

0.7M56-bit DESP4, 1.5 GHz, 
500 MB RAM

Oechslin, 
2003

66M40-bit DESVirtex1000UCL, 2002

2M56-bit DES64-bit Alpha 
computer

Biham, 1997

speed(enc/s)algorithmplatform



Future work

• Perform the attack for one salt
• Optimize the choice of parameters
• Examine how many tables would be

optimal
• Try this on PlayStation 3 



Conclusions

• FPGA implementation of the Unix 
password system

• FPGA creates the table inputs for the off-
line part of the time-memory trade-off

• Decisions need to be made on other
aspects of the attack


