
An Efficient Hardware Architecture
for Factoring Integers

with the Elliptic Curve Method

Jens Franke, Thorsten Kleinjung - University of Bonn

Christof Paar, Jan Pelzl - University of Bochum

Christine Priplata, Colin Stahlke - EDIZONE GmbH, Bonn

Martin Šimka – University of Košice

SHARCS Workshop, Paris, 24.2.2005ECM Hardware Architecture2

Outline

1. Motivation and Introduction

2. The Elliptic Curve Method
3. A Hardware Architecture for ECM

4. Results
5. Conclusions

SHARCS Workshop, Paris, 24.2.2005ECM Hardware Architecture3

1. Introduction

Why factor numbers?

• Security of RSA relies on difficulty to factor large composites

n = p· q, known n, what is p and q?

(in practice: n ~ 1024 bit)

• Holy grail in cryptanalysis:

„Find efficient method for factoring (large) integers.“

SHARCS Workshop, Paris, 24.2.2005ECM Hardware Architecture4

1. Introduction

Running time of certain factorization methods:

O(ec(lnN)1/3(lnlnN)2/3)Number Field Sieve

Running timeMethod

O(e((2+o(1))lnf lnlnf)1/2(logN)2)Elliptic Curve Method (ECM)

O(f1/2(logN)2)Pollard‘s rho

O(f·(logN)2)Trial Division

O(e(clnN lnlnN)1/2)Continued Fraction (CF)

O(e ((1+o(1))lnN lnlnN)1/2)Multiple Polynomial Quadratic Sieve (MPQS)

O(N1/3)Lehman‘s algorithm

(N: composite, f: nontrivial factor)

Running
time

depending
on f

Running
time

depending
on N

SHARCS Workshop, Paris, 24.2.2005ECM Hardware Architecture5

1. Introduction

Different algorithms for different purposes, e.g.,

• Best known method for factoring large integers: GNFS
(WR in factoring random RSA modulus: 576 bit)

• Methods suited for factoring numbers of 100-200 bit, e.g.,
– MPQS
– ECM (small factors)
– Trial division (very, very small factors)

SHARCS Workshop, Paris, 24.2.2005ECM Hardware Architecture6

1. Introduction

Observation for, e.g., GNFS:
• Smoothness tests of „medium sized“ integers required

Objective:
• Design special purpose hardware for smoothness tests
• Parameters (SHARK):

– Factor numbers up to 200 bit with factors up to 40 bit
– Target low area-time (AT) complexity
– Technical feasability preferable

⇒ Elliptic Curve Method (ECM)

SHARCS Workshop, Paris, 24.2.2005ECM Hardware Architecture7

1. Introduction

Why ECM?

• Factor integers with relatively small factors (up to 40 bit)

• Almost ideal for hardware implementation:
– Allows for low I/O
– Requires little memory
– Easy to parallelize
– Closely related to Elliptic Curve Cryptography (ECC)

SHARCS Workshop, Paris, 24.2.2005ECM Hardware Architecture8

2. The Elliptic Curve Method

SHARCS Workshop, Paris, 24.2.2005ECM Hardware Architecture9

2. The Elliptic Curve Method

• Algorithm proposed by [H.W. Lenstra 1985]

• Principle based on Pollard‘s (p-1)-method:

– given an elliptic curve E defined over Z/NZ and
a point P ∈ E(Z/NZ)

– compute point multiple k· P and „hope“ that

k · P = O ∈ E(Z/pZ) and k · P ≠ O ∈ E(Z/NZ)

(e.g., with E: y2z=x3+axz2+bz3 and Q=k · P=(xQ,yQ,zQ),
zQ = 0 mod p and zQ ≠ 0 mod N,
hence, gcd(zQ,N)=p)

SHARCS Workshop, Paris, 24.2.2005ECM Hardware Architecture10

2. The Elliptic Curve Method

• Advantage over Pollard‘s (p-1)-method:

– If no factor found, simply choose another curve
– Easy to parallelize

SHARCS Workshop, Paris, 24.2.2005ECM Hardware Architecture11

2. The Elliptic Curve Method

Elliptic curves and point arithmetic:

• Use curves in Montgomery form:

By2z=x3+Ax2z+xz2

• Point addition of P+Q involves P, Q and P-Q:
xP+Q = zP-Q[(xP-zP)(xQ+zQ)+(xP+zP)(xQ-zQ)]2

zP+Q = xP-Q[(xP-zP)(xQ+zQ) -(xP+zP)(xQ-zQ)]2

• Point duplication of P involves P, curve parameter A:
4xpzp = (xP+zP)2-(xP-zP)2

x2P = (xP+zP)2(xP-zP)2

y2P = 4xPzP[(xP-zP)2+4xPzP(A+2)/4]

SHARCS Workshop, Paris, 24.2.2005ECM Hardware Architecture12

2. The Elliptic Curve Method

ECM Phase 1:
Compute Q=k · P with k = ∏p ∈ P, p � B1

pep and ep = [log B1/log p]

– Use Montgomery ladder for point multiplication:
Given the triple (P,nP,(n+1)P), we either compute

(P, 2nP ,(2n+1)P) or
(P,(2n+1)P,2(n+1)P)

by one addition and duplication in Montgomery form.

– In the case of zP=1, 10[log2k] multiplications are required

SHARCS Workshop, Paris, 24.2.2005ECM Hardware Architecture13

2. The Elliptic Curve Method

ECM Phase 2:

Compute pi· Q ∀ B1 � pi � B2 and check if gcd(zpQ,N) > 1

Efficient method for phase 2:
– Precompute small table T of multiples k·Q

– Express all primes as pi = mD ± k with k ∈ T
(could compute pi·Q = mD·Q ± k·Q)

– Fact: gcd(zpQ,N) > 1 iff gcd(xmDQzkQ – xkQzmDQ,N) > 1

(hence, only sequence of mDQ has to be computed)

– Compute product ∏(xmDQzkQ - xkQzmDQ) for all primes
and perform a final gcd with N

SHARCS Workshop, Paris, 24.2.2005ECM Hardware Architecture14

2. The Elliptic Curve Method

Choice of „good“ parameters:

• Set of parameters deduced by software experiments:
B1 = 960, B2 = 57 000, D = 30

• Probability of success ~ 80% with 20 distinct curves per N

• Time complexity of ECM phases:
– Phase 1: ~ 13740 modular multiplications/ squarings
– Phase 2: ~ 24926 modular multiplications/ squarings

• Memory complexity: 21 registers of size of N per ECM unit

SHARCS Workshop, Paris, 24.2.2005ECM Hardware Architecture15

3. A Hardware Architecture for ECM

SHARCS Workshop, Paris, 24.2.2005ECM Hardware Architecture16

3. A Hardware Architecture for ECM

Design objectives:

– Low area-time (AT) product

– Low communication overhead

– Parallelizable architecture

– Easy to adopt to other bitlengths

SHARCS Workshop, Paris, 24.2.2005ECM Hardware Architecture17

Top down design of ECM:

Point multiplication

Point operations
(addition & duplication)

Arithmetic in ZN

(addition, subtraction, multiplication, squaring)

ECM Logic
Phases 1 & 2

3. A Hardware Architecture for ECM

SHARCS Workshop, Paris, 24.2.2005ECM Hardware Architecture18

Specification of a single ECM unit:

• One ECM unit handles one curve (initialized in the beginning)

• Control of both phases by (external) central logic
(control sequence is identical for every unit)

• Each unit has ist own memory

• Units implement arithmetic in ZN

– addition + subtraction: Standard carry ripple adder (wordwise)
– multiplication and squaring: efficient multiplier with

pipelining-structure [Koç et al.]

3. A Hardware Architecture for ECM

SHARCS Workshop, Paris, 24.2.2005ECM Hardware Architecture19

ECM unit: n

clk

reset

start

sub

x

y

m

s_write_enable

s_address

s

xy_address

running

lo
gi

c

w

w

b

w

m_address

b

b
m

em
or

y
4

w
or

ki
ng

 r
eg

is
te

rs

7
in

pu
t r

eg
is

te
rs 4w

addr

1711

cm
d

st
ar

t

re
se

t

clk

reset

start

x

y

s

m

sub

b

w

b

w

w

w

w

b

s_write_enable

s_in_address

running

s

x_address

ysm_address

m
ul

ad
d

w

ECM unit

memory

(int.) control logic

arithmetic units

3. A Hardware Architecture for ECM

SHARCS Workshop, Paris, 24.2.2005ECM Hardware Architecture20

4. Results

Hardware platform: System-on-Chip (SoC), 25 MHz

Xilinx FPGA (XV2000E-6)

embedded µP (ARM7TDMI)

SHARCS Workshop, Paris, 24.2.2005ECM Hardware Architecture21

4. Results

Area-time specification of running implementation
(no estimates!):

• Maximum frequency: 38.132 MHz

• Device utilization (FPGA):
– 1122 CLBs (5.8%)

– 44 Block RAMs (27%)

• Running times (25MHz):
– Point addition (phase 1) 333µs

– Point addition (phase 2) 397µs

– Point duplication 330µs

– Phase1 912ms
– Phase2 1879ms

SHARCS Workshop, Paris, 24.2.2005ECM Hardware Architecture22

• Area-time efficient hardware architecture for ECM

• Running FPGA implementation as proof of concept

• Realistic (and realizable) circuit for supporting, e.g.,
the GNFS (ASIC estimates see paper)

5. Conclusion & Outlook

SHARCS Workshop, Paris, 24.2.2005ECM Hardware Architecture23

Future work:

– Optimize control logic
– Improvements of basic Montgomery ladder
– Analyze parallel ECM in hardware
– Use CPU core in VHDL instead of embedded ARM µP
– ASIC simulation of ECM

5. Conclusions & Outlook

SHARCS Workshop, Paris, 24.2.2005ECM Hardware Architecture24

Thanks!

5. Conclusions & Outlook

