Pollard Rho on the PlayStation 3

Joppe W. Bos1

Marcelo E. Kaihara¹

Peter L. Montgomery²

¹EPFL IC LACAL, CH-1015 Lausanne, Switzerland {joppe.bos, marcelo.kaihara}@epfl.ch

²Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA peter.montgomery@microsoft.com

Outline

- Preliminaries
 - The ECDLP
 - Pollard Rho
 - The Cell Broadband Engine
- 2 Fast SIMD Arithmetic Algorithms
- Results
- T CSUITS

Motivation

- Elliptic curve cryptography (ECC)
 - Popular public-key approach
 - Smaller key sizes
 - Widely standardized

Widely StalladialZea	
Standard for Efficient Cryptography	(112-521)
Wireless Transport Layer Security Specification	(112-224)
Digital Signature Standard (FIPS 186-3)	(192-521)

Motivation

- Elliptic curve cryptography (ECC)
 - Popular public-key approach
 - Smaller key sizes
 - Widely standardized
 Standard for Efficient Cryptography
 Wireless Transport Layer Security Specification
 Digital Signature Standard (FIPS 186-3)
 (112-521)
 (192-521)
- Security of elliptic curve schemes
 - Elliptic curve discrete logarithm problem
 - Pollard rho discrete logarithm algorithm $(\mathcal{O}(\sqrt{n}))$
 - Largest solved instance is for 109-bit prime field (2002)

Cryptanalysis

Related work (Pollard rho targeted at prime fields)

Estimates for solving the ECDLP for various sizes using using FPGAs: T. Güneysu, C. Paar, and J. Pelzl. Special-purpose hardware for solving the elliptic curve discrete logarithm problem. *ACM Transactions on Reconfigurable Technology and Systems*, 1(2):1-21, 2008.

Cryptanalysis

Related work (Pollard rho targeted at prime fields)

Estimates for solving the ECDLP for various sizes using using FPGAs: T. Güneysu, C. Paar, and J. Pelzl. Special-purpose hardware for solving the elliptic curve discrete logarithm problem. *ACM Transactions on Reconfigurable Technology and Systems*, 1(2):1-21, 2008.

What we did

Evaluate the security of the 112-bit standard.

Target: Low-priced and broadly available multi-core Cell architecture.

- Design SIMD arithmetic algorithms.
- Implement Pollard rho exploiting the features of the Cell architecture.
- Optimize arithmetic for the 112-bit prime
- Set a new record by solving this ECDLP.

The ECDLP

The setting:

- E is an elliptic curve over \mathbb{F}_p with p prime.
- $P \in E(\mathbb{F}_p)$ a point of order n.
- $Q = k \cdot P \in \langle P \rangle$.

Problem: Given E, p, n, P and Q what is k?

Solving the ECDLP

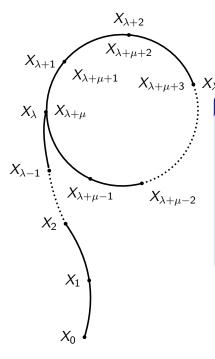
Pollard rho

The most efficient algorithm in the literature (for generic curves) is Pollard rho. The underlying idea of this method is to search for two distinct pairs $(c_i, d_i), (c_j, d_j) \in \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$ such that

$$c_i \cdot P + d_i \cdot Q = c_j \cdot P + d_j \cdot Q$$

 $(c_i - c_j) \cdot P = (d_j - d_i) \cdot Q = (d_j - d_i)k \cdot P$
 $k \equiv (c_i - c_j)(d_j - d_i)^{-1} \mod n$

J. M. Pollard. Monte Carlo methods for index computation (mod p). *Mathematics of Computation*, 32:918-924, 1978.



- "Walk" through the set $\langle P \rangle$.
- $\bullet \ X_i = c_i \cdot P + d_i \cdot Q$
- Iteration function $f: \langle P \rangle \rightarrow \langle P \rangle$
- This sequence eventually collides.
- Expected number of steps $\sqrt{\pi \cdot |\langle P \rangle|}$

(iterations):
$$\sqrt{\frac{\pi \cdot |\langle P \rangle|}{2}}$$

Survey of Various Optimizations

• r-adding walks
E. Teske. On random walks for Pollard's rho method. Mathematics of Computation, 70(234):809-825, 2001.

Survey of Various Optimizations

- r-adding walks
 E. Teske. On random walks for Pollard's rho method. Mathematics of Computation, 70(234):809-825, 2001.
- Parallel version, distinguish points and send them to a central server
 P. C. van Oorschot and M. J. Wiener. Parallel collision search with cryptanalytic applications. *Journal of Cryptology*, 12(1):1-28, 1999.

Survey of Various Optimizations

- r-adding walks
 E. Teske. On random walks for Pollard's rho method. Mathematics of Computation, 70(234):809-825, 2001.
- Parallel version, distinguish points and send them to a central server
 P. C. van Oorschot and M. J. Wiener. Parallel collision search with cryptanalytic applications. *Journal of Cryptology*, 12(1):1-28, 1999.
- Simultaneous Inversion, trade inversions for multiplications
 P. L. Montgomery. Speeding the Pollard and elliptic curve methods of factorization. Mathematics of Computation, 48:243-264. 1987.

Survey of Various Optimizations

- r-adding walks
 E. Teske. On random walks for Pollard's rho method. Mathematics of Computation, 70(234):809-825, 2001.
- Parallel version, distinguish points and send them to a central server
 P. C. van Oorschot and M. J. Wiener. Parallel collision search with cryptanalytic applications. *Journal of Cryptology*, 12(1):1-28, 1999.
- Simultaneous Inversion, trade inversions for multiplications
 P. L. Montgomery. Speeding the Pollard and elliptic curve methods of factorization. Mathematics of Computation, 48:243-264. 1987.
- Negation Map (not used)
 M. J. Wiener and R. J. Zuccherato. Faster attacks on elliptic curve cryptosystems. In Selected Areas in Cryptography, volume 1556 of LNCS, pages 190-200, 1998.

The PlayStation 3

Cell architecture in the PlayStation 3 (@ 3.2 GHz):

- Broadly available (24.6 million)
- Relatively cheap (US\$ 300)

PPE PPE

The Cell contains

- eight "Synergistic Processing Elements" (SPEs)
 six available to the user in the PS3
- one "Power Processor Element" (PPE)
- the Element Interconnect Bus (EIB)
 a specialized high-bandwidth circular data bus

Cell architecture, the SPEs

The SPEs contain

- a Synergistic Processing Unit (SPU)
 - Access to 128 registers of 128-bit
 - SIMD operations
 - Dual pipeline (odd and even)
 - Rich instruction set
 - In-order processor
- 256 KB of fast local memory (Local Store)
- Memory Flow Controller (MFC)
 - Direct Memory Access (DMA) controller
 - Handles synchronization operations to the other SPUs and the PPU
 - DMA transfers are independent of the SPU program execution

Programming Challenges

- Memory
 - The executable and all data should fit in the LS
 - Or perform manual DMA requests to the main memory (max. 214 MB)
- Branching
 - No "smart" dynamic branch prediction
 - Instead "prepare-to-branch" instructions to redirect instruction prefetch to branch targets
- Instruction set limitations
 - $16 \times 16 \rightarrow 32$ bit multipliers (4-SIMD)
- Dual pipeline
 - One odd and one even instruction can be dispatched per clock cycle.

Integer Representation

Four $(16 \cdot m)$ -bit integers A, B, C, D represented in m vectors.

$$X = \sum_{i=0}^{m-1} x_i \cdot 2^{16 \cdot i}$$

$$V[0] = \underbrace{\begin{vmatrix} 16 \cdot \text{bit} \\ \text{high} \end{vmatrix}}_{\text{low}} \underbrace{\begin{vmatrix} 16 \cdot \text{bit} \\ \text{bo} \end{vmatrix}}_{\text{low}} \underbrace{\begin{vmatrix} b_0 & c_0 & d_0 \\ & & & \\ & & \\ & & & \\ & & & \\ & & \\ & &$$

the most significant position of X_1 is located in

either the lower or higher 16-bit of the 32-bit word

Arithmetic (I)

When using simultaneous inversion and affine Weierstrass representation

- 6 modular multiplications
- 6 modular subtractions
- $\frac{1}{M}$ inversion

are needed in order to perform one step when running M curves in parallel.

Performance bottleneck: modular multiplication

Arithmetic (II)

112-bit target

The prime 112-bit p in the target curve $E(\mathbb{F}_p)$ is

$$p = \frac{2^{128} - 3}{11.6949}$$

Idea: Redundant representation modulo $\widetilde{p} = 2^{128} - 3 = 11 \cdot 6949 \cdot p$

Note: $x \cdot 2^{128} \equiv x \cdot 3 \mod \widetilde{p}$

Fast Modular Multiplication

Do the multiplication and reduction separately.

Fast schoolbook Multiplication

- If $0 \le a, b, c, d < 2^{16}$, then $a \cdot b + c + d < 2^{32}$.
- Use the multiply-and-add instruction and an extra addition of carries.
- Branch-free implementation.

Fast Modular Multiplication

Do the multiplication and reduction separately.

Fast schoolbook Multiplication

- If $0 \le a, b, c, d < 2^{16}$, then $a \cdot b + c + d < 2^{32}$.
- Use the multiply-and-add instruction and an extra addition of carries.
- Branch-free implementation.

Fast reduction

$$\begin{array}{cccc} R: & \mathbb{Z}/2^{256}\mathbb{Z} & \to & \mathbb{Z}/2^{256}\mathbb{Z} \\ & x & \mapsto & \left(x \text{ mod } 2^{128}\right) + 3 \cdot \left\lfloor \frac{x}{2^{128}} \right\rfloor \end{array}$$

$$x = x_H \cdot 2^{128} + x_L \equiv x_L + 3 \cdot x_H = R(x) \bmod \widetilde{p}$$

Fast Reduction

Proposition

For independent random 128-bit non-negative integers x and y there is overwhelming probability that $0 \le R(R(x \cdot y)) < \tilde{p}$.

Counter-examples easy to construct: $0 \le R(R(x)) < 2^{128} + 9$

During the whole run not a single faulty reduction.

Modular Inversion

- Almost Montgomery inverse: $x^{-1} \cdot 2^k \mod p$ for some known k
- A normalization phase where the factor $2^k \mod p$ is removed
- "Almost" branch free implementation
- SIMD implementation, work on four variables simultaneously

Modular Inversion

- Almost Montgomery inverse: $x^{-1} \cdot 2^k \mod p$ for some known k
- A normalization phase where the factor $2^k \mod p$ is removed
- "Almost" branch free implementation
- SIMD implementation, work on four variables simultaneously

Distinguish Point Property and r-Adding Walks

Need to uniquely determine the partition number and DTP property.

$$P = (x, y)$$
, $0 \le x < \widetilde{p}$. Compute $z = x \pmod{p}$

One 16-bit step of Montgomery reduction

$$z = x \cdot 2^{-16} \pmod{p}$$

LACAL setup

- Physically in the cluster room: 190 PS3s
- 6 × 4 PS3s in the PlayLaB (attached to the cluster)
- 5 PS3 in our offices for programming purposes
- \Rightarrow 219 PS3s in total.

Performance Results

Operation	#cycles	Quantity	#cycles
	per operation	per iteration	per iteration
Modular multiplication	53	6	318
Modular subtraction	5	6	30
Montgomery reduction	24	1	24
Modular inversion	4941	$\frac{1}{400}$	12
Miscellaneous	69	1	69
Total			453

Performance Results

Operation	#cycles	Quantity	#cycles
	per operation	per iteration	per iteration
Modular multiplication	53	6	318
Modular subtraction	5	6	30
Montgomery reduction	24	1	24
Modular inversion	4941	$\frac{1}{400}$	12
Miscellaneous	69	1	69
Total			453

Hence, our 214-PS3 cluster:

- \bullet computes $9.1 \cdot 10^9 \approx 2^{33}$ iterations per second
- works on > 0.5M curves in parallel

Comparison

XC3S1000 FPGAs [1]

- FPGA-results of EC over 96- and 128-bit generic prime fields for COPACOBANA [2]
- Can host up to 120 FPGAs (US\$ 10,000)

Our implementation

- Targeted at 112-bit prime curve.
- ullet Use 128-bit multiplication + fast reduction modulo \widetilde{p}
- For US\$ 10,000 buy 33 PS3s.
- [1] T. Güneysu, C. Paar, and J. Pelzl. Special-purpose hardware for solving the elliptic curve discrete logarithm problem. *ACM Transactions on Reconfigurable Technology and Systems*, 1(2):1-21, 2008.
- [2] S. Kumar, C. Paar, J. Pelzl, G. Pfeiffer, and M. Schimmler. Breaking ciphers with COPACOBANA a cost-optimized parallel code breaker. In CHES 2006, volume 4249 of LNCS, pages 101-118, 2006.

Comparison

	96 bits	128 bits	
COPACOBANA	$4.0 \cdot 10^7$	$2.1 \cdot 10^7$	
+ Moore's law	$7.9 \cdot 10^7$	$4.2 \cdot 10^{7}$	
+ Negation map	$1.1 \cdot 10^{8}$	$5.9 \cdot 10^{7}$	
PS3	$4.2\cdot 10^7$		
33 PS3	$1.4\cdot 10^9$		

Table: Iterations per second

```
33 PS3 / COPACOBANA (96 bits): 12.4 times faster 33 PS3 / COPACOBANA (128 bits): 23.8 times faster
```

Note: 33 dual-threaded PPE were not used!

The 112-bit Solution

The point P of order n is given in the standard. The x-coordinate of Q was chosen as $\lfloor (\pi - 3)10^{34} \rfloor$.

- \bullet Expected #iterations $\sqrt{\frac{\pi \cdot n}{2}} \approx 8.4 \cdot 10^{16}$
- January 13, 2009 July 8, 2009 (not running continuously)
- When run continuously using the latest version of our code, the same calculation would have taken 3.5 months.

```
P = (188281465057972534892223778713752, 3419875491033170827167861896082688)
Q = (1415926535897932384626433832795028, 3846759606494706724286139623885544)
q = 4451685225093714776491891542548933
```

 $Q = 312521636014772477161767351856699 \cdot P$

Conclusions

- We presented modular arithmetic algorithms using SIMD instruction.
- We showed the potential of the Cell architecture for cryptanalysis.
- Pollard rho SIMD-implementation
- Set a new record for solving the ECDLP.

Conclusions

- We presented modular arithmetic algorithms using SIMD instruction.
- We showed the potential of the Cell architecture for cryptanalysis.
- Pollard rho SIMD-implementation
- Set a new record for solving the ECDLP.

It is unwise to use the (standardized) elliptic curves over 112-bit fields in practice!

