Sparse Boolean Equations and Circuit Lattices

Igor Semaev University of Bergen Norway

SHARCS, 9 September 2009

Problem

- ▶ X Boolean variable set, size n
- ▶ f_i Boolean polynomials in $X_i \subseteq X$
- ▶ Find all 0, 1-solutions to

$$f_1(X_1)=0,\ldots,f_m(X_m)=0$$

- were $|X_i| \le I$ for small I = 3, 4, ...
- No other restrictions
- ▶ E.g. TRIVIUM: 951 Boolean variables and equations
- each depends on 6 variables

Zakrevskij-Raddum Representation of Equations

- ▶ In [Zakrevskij,1999]
- ▶ Independently [Raddum,2004]
- ▶ $f_i(X_i) = 0 \Leftrightarrow$ solutions V_i in variables $X_i \Leftrightarrow E_i = (X_i, V_i)$
- ► E.g.

$$x_1x_2 + x_3 \equiv 0 \mod 2 \Leftrightarrow \begin{array}{cccc} x_1 & & 0 & 0 & 1 & 1 \\ x_2 & = & 0 & 1 & 0 & 1 \\ x_3 & & 0 & 0 & 0 & 1 \end{array}$$

- ▶ Solve $E_1, ..., E_m$ by guessing some variable values and check by Pairwise Agreeing (a kind of simplification, called local reduction by Zakrevskij and graph algorithm by Raddum)
- ► Combine equations by Gluing [Semaev,2005]

Agreeing-Gluing family

- ► Expected complexity much lower than worst case bounds, [Semaev,2007-08]
- Practically, Linear Algebra variant(MRHS) is far better than F4 in Magma
- ▶ E.g., more than 20000 times faster than F4 on AES-type random eqations with 48 Boolean variables, [Raddum-Semaev,2007]. MiniSat should be slow here, as the problem is not sparse in common sense
- Overcomes MiniSat in small sparsity, as 3,4,5, for randomly generated common sparse equations, [Schilling, in progress]
- Reasons for further development

Contribution Outline

- Graph equation representation and its simplification
- ▶ Pairwise equation modification with Agreeing2 method [Raddum-Semaev,2007]
- Agreeing2 with Circuit Lattices
- Reduced Circuit Lattices (require much low number of transistors)
- ▶ DES and TripleDES equation systems

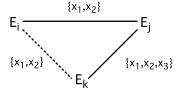
Equation System Graph and Pairwise Agreeing

- ▶ **System**: $f_1(X_1) = 0, ..., f_m(X_m) = 0$
- ▶ Connect $E_i = (X_i, V_i)$ and $E_j = (X_j, V_j)$ by
- ▶ Edge labeled $X_i \cap X_j \neq \emptyset$

- ▶ Pairwise Agreeing. Let $Y \subseteq X_i \cap X_j$
- ▶ Learn ban $Y \neq a$ from E_i
- \triangleright Expand to E_j through the edge
- ightharpoonup Modify E_j accordingly

Obsolescent Edges

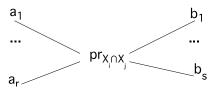
- Remove some edges and keep Algorithm's output
- ▶ E.g. $X_i = \{x_1, x_2, x_4\}, X_j = \{x_1, x_2, x_3, x_5\}, X_k = \{x_1, x_2, x_3\}$



- Left edges called maximal
- ▶ 16831 edges in Triple DES equation system initially
- 3929 maximal (left after removals)

Fast Pairwise Agreeing (Agreeing2 method)

- ▶ For maximal edges (E_i, E_j)
- ▶ $a_1, ..., a_r$ and $b_1, ..., b_s$ solutions to E_i and E_j with the same projection to $X_i \cap X_j$



▶ Pre-compute all $\{a_1, \ldots, a_r; b_1, \ldots, b_s\}$

Fast Pairwise Agreeing (Agreeing2 method)

- ▶ **Notation:** $a_i \neq \text{part of a global solution} \Rightarrow \text{mark } \bar{a_i}$
- ▶ Each tuple $\{a_1, \ldots, a_r; b_1, \ldots, b_s\}$ is equivalent to
- lacksquare $ar{a_1},\ldots,ar{a_r}\Rightarrowar{b_1},\ldots,ar{b_s}$ and $ar{b_1},\ldots,ar{b_s}\Rightarrowar{a_1},\ldots,ar{a_r}$
- Solving the system:
- ▶ Introducing a guess \equiv marking some of a_i
- Expand marking through the tuples

Example

► Equations

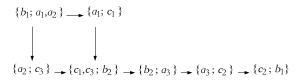
	a_1	a_2	<i>a</i> ₃			h	ha			<i>c</i> ₁	<i>c</i> ₂	<i>c</i> ₃
$\overline{x_1}$	0	0	1	-		$\frac{\nu_1}{\rho}$	1	_	<i>x</i> ₂	0	1	1
<i>x</i> ₂	0	1	1	,	<i>x</i> ₁	1	U T	,		1	0	1
<i>X</i> 3	1	1	0		<i>X</i> 4	1	U		<i>X</i> 4	1	1	0

► Tuples

$$\{a_1, a_2; b_1\}, \{a_3; b_2\}, \{b_1; c_2\}, \{b_2; c_1, c_3\}, \{a_1; c_1\}, \{a_2; c_3\}, \{a_3; c_2\}$$

Example

- ▶ Assume $x_4 = 0 \Rightarrow b_1$ should be marked(not a solution part)
- Implies marking expansion



- ▶ All instances(b₂ at early stage) got marked
- ▶ The system is inconsistent for $x_4 = 0$

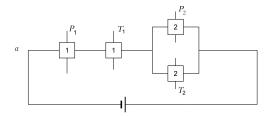
Circuit Lattice (Basic Construction)

- Circuit Lattice is a combination of switches and wires
- Two types of switches:

- ▶ 1-Switch controls vertical circuit by the horizontal
- 2-Switch controls horizontal circuit by the vertical

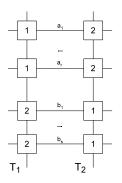
Horizontal circuits

- ▶ Each local solution $a \in E_i$ determines one horizontal circuit
- ▶ 1-Switches are connected in series(or in parallel)
- 2-Switches are connected in parallel



Endings are connected with a battery

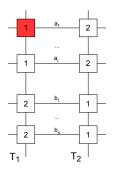
▶ Tuple $T = \{a_1, ..., a_r; b_1, ..., b_s\}$ defines two vertical circuits



Implement implications

$$\bar{a}_1, \ldots, \bar{a}_r \Rightarrow \bar{b}_1, \ldots, \bar{b}_s, \quad \bar{b}_1, \ldots, \bar{b}_s \Rightarrow \bar{a}_1, \ldots, \bar{a}_r$$

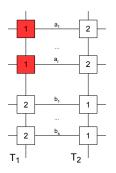
▶ Tuple $T = \{a_1, ..., a_r; b_1, ..., b_s\}$ defines two vertical circuits



► Implement implications

$$\bar{a}_1,\ldots,\bar{a}_r\Rightarrow \bar{b}_1,\ldots,\bar{b}_s,\quad \bar{b}_1,\ldots,\bar{b}_s\Rightarrow \bar{a}_1,\ldots,\bar{a}_r$$

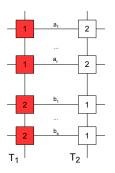
▶ Tuple $T = \{a_1, ..., a_r; b_1, ..., b_s\}$ defines two vertical circuits



► Implement implications

$$\bar{a}_1,\ldots,\bar{a}_r\Rightarrow \bar{b}_1,\ldots,\bar{b}_s,\quad \bar{b}_1,\ldots,\bar{b}_s\Rightarrow \bar{a}_1,\ldots,\bar{a}_r$$

▶ Tuple $T = \{a_1, ..., a_r; b_1, ..., b_s\}$ defines two vertical circuits

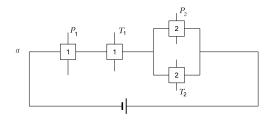


► Implement implications

$$\bar{a}_1,\ldots,\bar{a}_r\Rightarrow \bar{b}_1,\ldots,\bar{b}_s,\quad \bar{b}_1,\ldots,\bar{b}_s\Rightarrow \bar{a}_1,\ldots,\bar{a}_r$$

How horizontal circuit works

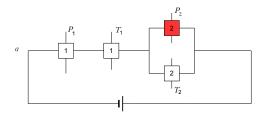
- $T = \{a, a_1, \ldots, a_2; b_1, \ldots, b_2\}, P = \{a, a_3, \ldots, a_4; c_1, \ldots, c_2\}$
- Define



- ▶ Voltage in vertical $P_2 \Rightarrow 2$ -Switch closed
- Voltage in circuit a (marking a)
- ▶ ⇒ 1-Switches closed
- Voltage may appear in the vertical circuit T₁

How horizontal circuit works

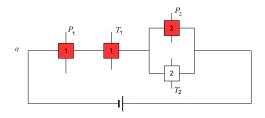
- $T = \{a, a_1, \ldots, a_2; b_1, \ldots, b_2\}, P = \{a, a_3, \ldots, a_4; c_1, \ldots, c_2\}$
- Define



- ▶ Voltage in vertical $P_2 \Rightarrow 2$ -Switch closed
- Voltage in circuit a (marking a)
- ▶ ⇒ 1-Switches closed
- ightharpoonup Voltage may appear in the vertical circuit T_1

How horizontal circuit works

- $T = \{a, a_1, \ldots, a_2; b_1, \ldots, b_2\}, P = \{a, a_3, \ldots, a_4; c_1, \ldots, c_2\}$
- Define

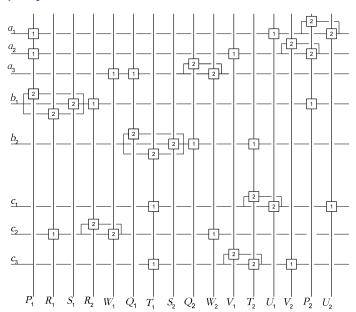


- ▶ Voltage in vertical $P_2 \Rightarrow 2$ -Switch closed
- Voltage in circuit a (marking a)
- ▶ ⇒ 1-Switches closed
- ightharpoonup Voltage may appear in the vertical circuit T_1

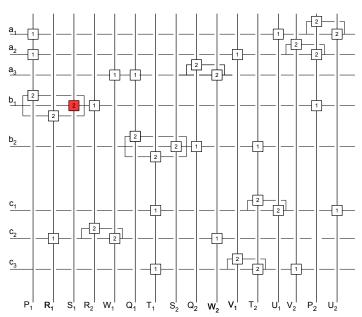
Introduce the guess

- Generally, no voltage in initial circuit lattice
- Assume E_i depends on x_j
- ▶ $a_1, ..., a_2$ solutions to E_i , where $x_j = 0$
- ▶ Add 2-Switch to each $a_1, ..., a_2$, connect them
- Guessing $x_i = 0$ is inducing voltage in new circuit
- ▶ Similarly, guessing $x_j = 1$
- ▶ s-variable guess 2s new vertical circuits

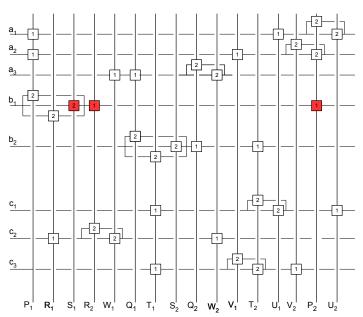
Exemplary circuit



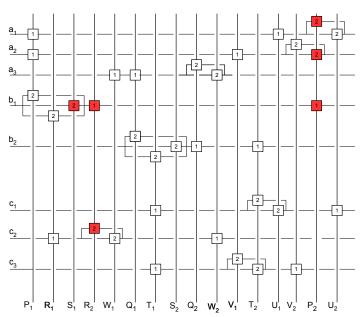
1st turn: introduce guess $x_4 = 0$



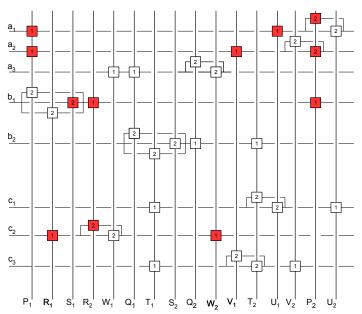
2nd turn



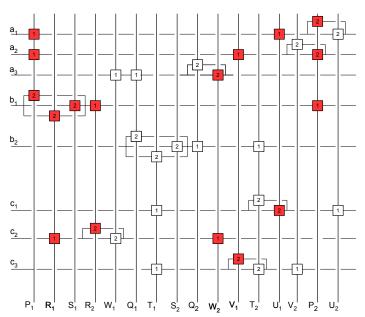
3rd turn



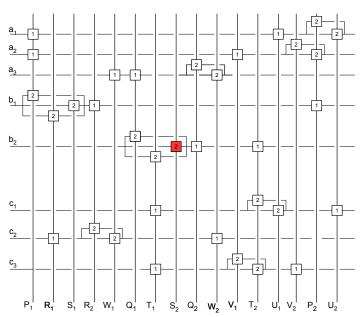
4th turn



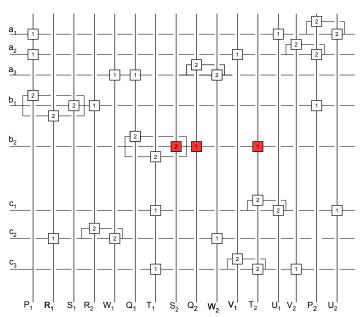
5th turn: Observe Inconsistence



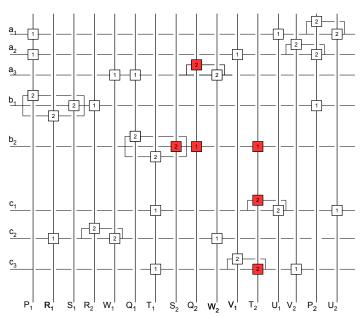
1st turn: introduce guess $x_4 = 1$



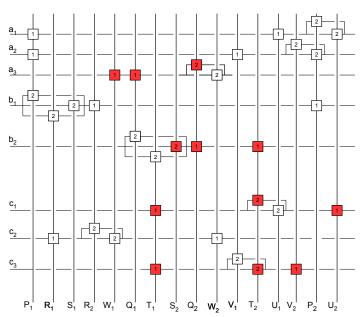
2nd turn



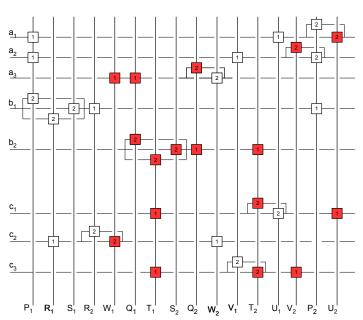
3rd turn



4th turn

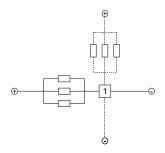


5th turn: Observe Inconsistence



Reduced Circuit Lattice

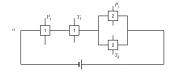
- Use Switches that control several circuits
- ▶ They may be controlled by any of several circuits



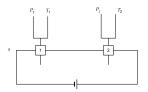
- ▶ 1-Switch: Any of horizontal circuits control all vertical circuits
- ▶ In 2-Switches, any vertical circuit controls all horizontals

Reduced Horizontal Circuits

► Transform horizontal circuit



by using new switches to

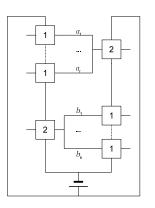


Number of switches is now

$$2 imes ext{(number of local solutions)} = 2 \sum_i |V_i|$$

Reduced Vertical Circuits

▶ One 2-Switch can control several horizontal circuits



Overall number of switches after the reductions

$$\sum_{i} |V_i| + 2 \sum_{tuples} 1$$

DES and TripleDES equations

- Variables:
- ▶ 64-bit plain-text, cipher-text,
- ▶ internal state blocks and 56(112)-bit key
- Equations from S-boxes as

$$Y_4 \oplus Z_4 = S(X_6 \oplus K_6)$$

- ► Each equation: 20 variables and 2¹⁶ RHS
- Study the system parameters

TripleDES system parameters

- ▶ 1712 variables, 384 equations
- ▶ 3929 maximal edges
- ▶ 71320 tuples
- \triangleright 2.6 \times 10⁷ switches
- ▶ $480 = 2 \times 128 + 2 \times 112$ input contacts
- The device doesn't require synchronization

Implement on Modern Semiconductor Crystals for brute force?

- Transistor works as a switch
- ▶ 1.7×10^9 transistors on Dual-Core Itanium2 processor $(2.6 \times 10^7 \text{ required})$
- ► Circuit Lattice speed $\leq 2 \times (\text{number of rounds})$ transistor turns
- ▶ $2 \times 48 + 2$ turns for TripleDES
- One transistor turn, say 100GHz(1000GHz reported)
- ▶ 1GHz key-rejecting rate when using for brute force
- ► Reported(2006) 0.13GHz per chip with implementing encryption

Conclusions

- Using only maximal edges significantly economizes parameters
- Equation solving is shown as voltage expansion through a lattice of switches
- Our approach seems more flexible than implementing encryption as enables handling any equation system representing cipher
- Applications to DES, TripleDES are discussed