

SHARCS 2009, 09-10.09.2009, Lausanne, Switzerland

Three Years of Evolution Cryptanalysis with COPACOBANA

<u>Tim Güneysu</u>, Gerd Pfeiffer, Christof Paar, Manfred Schimmler (et. al.)

Chair for Embedded Security
Ruhr-University Bochum, Germany
and
Electrical Department of
the University of Kiel, Germany

- Introduction and Motivation
- Architecture of COPACOBANA
- Cryptanalytic Applications on COPACOBANA
- Deficiencies and Limitations
- The Next Cluster Generation: COPACOBANA v2

- Introduction and Motivation
- Architecture of COPACOBANA
- Cryptanalytic Applications on COPACOBANA
- Deficiencies and Limitations
- The Next Cluster Generation: COPACOBANA v2

Introduction and Motivation

- Security of ciphers is related to complexity of attacks
- Complexity of attacks are determined by their asymptotic runtime and step count, e.g.,
 - Pollard-Rho Attack on ECC-160 → ≈ 2⁸⁰ steps (average)
 - SHA-1 Collisions (EUROCRYPT '09) → ≈ 2⁵² steps (average)
- To understand complexity of a single step, its implementation on an actual system required
- Finding the platform that provides the most efficient attack implementation (w.r.t. cost and performance) allows to determine the cryptosystem's real-world security

Potential Platforms for Cryptanalysis

– Large supercomputers:

- Complex and expensive parallel computing architectures
- Fast I/O, large memory
- Examples are Cray-XD1, IBM BlueGene
- ► Too complex for (most) cryptanalysis (bad cost-performance ratio)

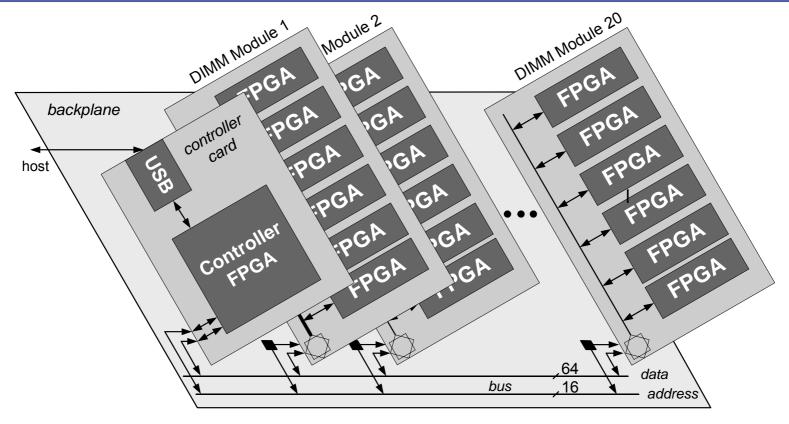
- · Dedicated clients in clusters, or
- Using PC's idle time, for example SETI@home (BOINC)
- Problem of motivating for cryptanalytic challenges, confidentiality issues, power consumption of the cluster

Special purpose hardware:

- Application Specific Integrated Circuits (ASICs, high NRE)
- Field Programmable Gate Arrays (FPGAs, low NRE)
- ► Tradeoff between reprogrammability and price per piece, best costperformance ratio

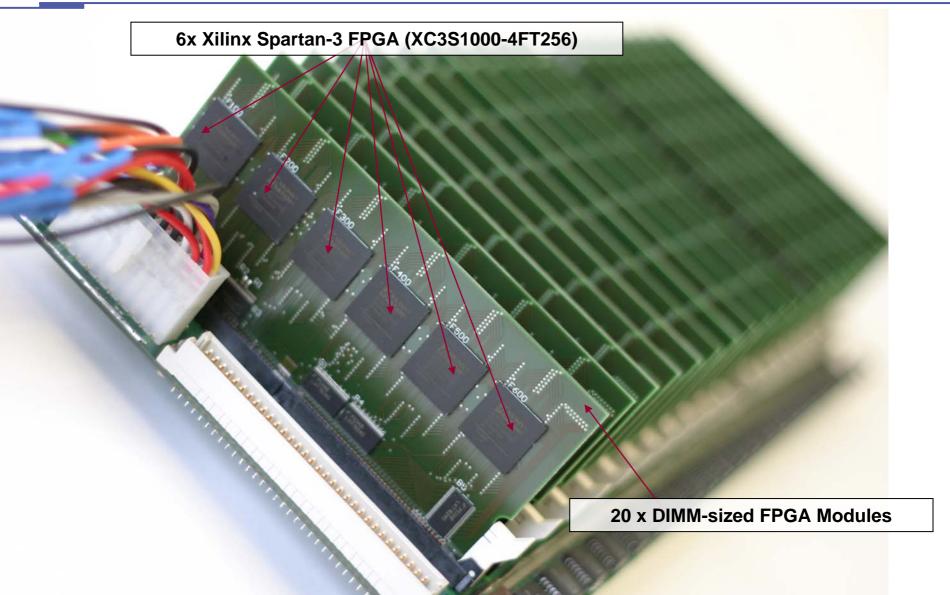
- Large supercomputers:
 - Complex and expensive parallel computing architectures

- Special purpose hardware:
- → FPGA-based COPACOBANA Cluster (Cost Optimized Parallel Code Breaker)



- Introduction and Motivation
- Architecture of COPACOBANA
- Cryptanalytic Applications on COPACOBANA
- Deficiencies and Limitations
- The Next Cluster Generation: COPACOBANA v2

COPACOBANA: Architecture



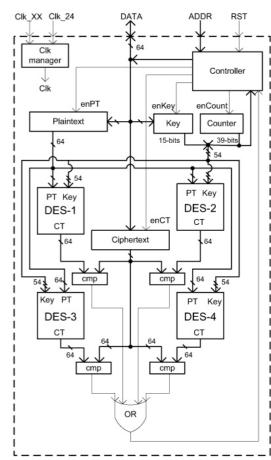
- Backplane with plug-in slots can host up to 20 DIMM-sized FPGA modules
- 6 x low-cost Xilinx Spartan-3 FPGAs (XC3S1000) per FPGA module
- Shared 64-bit data and 16-bit address connection on backplane (bi-directional)
- Controller connects PC with FPGAs in a slow Master-Slave scheme (3 MBit/s)

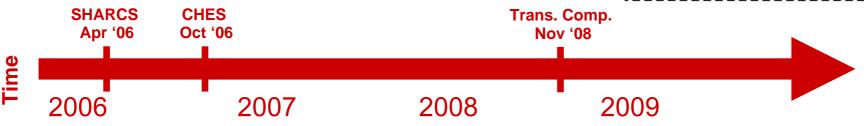
COPACOBANA: Prototype

Horst Görtz Institute for IT-Security

COPACOBANA: Release Candidate

- Introduction and Motivation
- Architecture of COPACOBANA
- Cryptanalytic Applications on COPACOBANA
- Deficiencies and Limitations
- The Next Cluster Generation: COPACOBANA v2




Exhaustive Key Search with COPACOBANA

First release shown on SHARCS/CHES 2006: Successful Key Search on 56-bit DES for <10k€

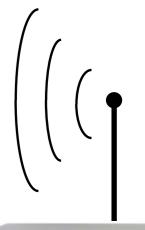
- 4 pipelined DES engines on each FPGA
- One key per clock cycle per DES engine
- One FPGA@100MHz: 400 mio. keys/s
- Comparison: Pentium4@3GHz ≈ 2 mio. keys/s
- Search time 8.6 days on average (100MHz), with further optimizations (136 MHz) search time reduced to 6.4 days!

Exhaustive Key Search with COPACOBANA

Real-World Attacks on DES-based Systems

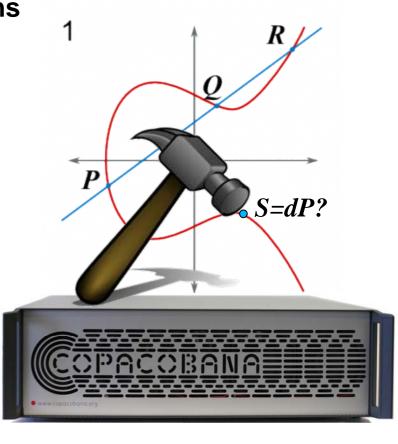
- Norton Diskreet Harddisk Encryption (DES)
 - Weak key derivation from passwords
 - If pwd consists only of {A, . . . ,Z,@, [, \,],, }
 attack requires 2³⁵ ops → <1s search time
- Attack on the Basic Access Control (BAC) of ePass
 - Little entropy in MRZ allows for brute force attack on SHA-1-TDES enc./auth.
 - Access to private data in 18 seconds (real time)
- DES-based One-Time Password Tokens
 - Key extraction from OTP tokens by knowledge of 2-3 challenge-response pairs

Smarter Attacks with COPACOBANA



Attacking the A5/1 Stream Cipher in GSM

- Hardware-based guessing attack (CHES '08)
 - adapted attack from Keller and Seitz
 - breaks A5/1 in about 6 hours on average
- Time Memory Data Tradeoff on A5/1 with COPACOBANA
 - Success rate 63% with 64 data points after 27s, 95.4 days of precomputation time and total table size of 4.85 TB
 - However, construction of precomputation tables is not finished due to host slow interface


CHES Trans. Comp. Diss. M. Novotny Aug '08 Nov '08 Apr. '09

Supporting Asymmetric Cryptanalysis

Solving Elliptic Curve Discrete Logarithms

- First Pollard-Rho Attack on ECC over prime fields in hardware (SHARCS '06/FPGA '07/ACM TRETS)
- On average, one COPACOBANA solves ECCP-97 in about three months, ECCP-109 in 24 years
- In the next session: Pollard-Rho for binary (Koblitz) curves ECC2-131, ECC2K-130 and ECC2/K-163

Implementing ECM (phase 1+2) on COPACOBANA

- Using "classical" Montgomery curves
- Montgomery ladder for phase 1 and (adapted) standard continuation method for phase 2
- Acceleration of required field operations ADD/SUB/MUL with dedicated arithmetic units in FPGAs (DSP blocks)
- No DSPs in Spartan-3 XC3S1000
 → FPGA module redesigned for Virtex-4 SX 35
- 24 ECM cores per Virtex SX 35
 2131 ops/s for 151 bit parameters (post-synth)
 - →I/O limits performance
 - →BRAMs limit prime table size

Factor n= 7626668401 080283463

FPL Workshop on Factorization Jul '08 11./12 Sep '09, Bochum

E E E

006 200

07

2008

2009

Evolution of FPGA modules from XC3S1000 to XCV4SX35 FPGAs

Original:

6xSpartan-3 XC3S1000

Redesign:

8xVirtex-4 XCV4SX35

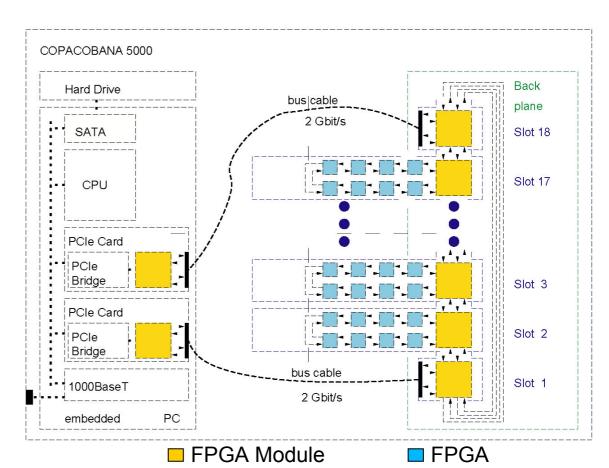
Significantly higher power consumption with Virtex-4 FPGAs (10W ea.)

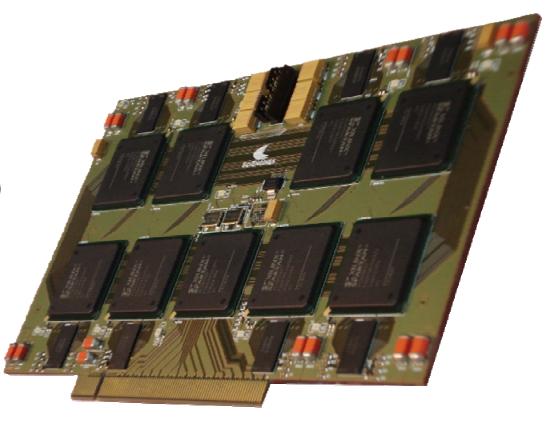
- Enhanced power supply for 128 FPGAs: 120A@12V = 1.5kW
- Improved cooling using high-performance heat sinks and fans

- Introduction and Motivation
- Architecture of COPACOBANA
- Timeline of Cryptanalytic Applications on COPACOBANA
- Deficiencies and Limitations
- The Next Cluster Generation: COPACOBANA v2

Deficiencies and Limitations

- Spartan-3 XC3S1000 FPGAs only provide limited amount of logic
 → replace them by larger and recent FPGAs such as Spartan-6 (see Peter Alfke's talk tomorrow)
- Slow Master-Slave bus system is a real issue for data-intensive apps
- Use of memory is restricted to internal 18 kbit BRAM blocks
 → some applications (e.g., ECM) could benefit from external memory
- Virtex FPGAs are less appropriate for cryptanalysis
 - More expensive w.r.t. Spartan-3 (factor of >5x).
 - Spartan-3A DSP/Spartan-6 have DSP blocks, too
 - High overhead due to cooling and power needs


- Introduction and Motivation
- Architecture of COPACOBANA
- Timeline of Cryptanalytic Applications on COPACOBANA
- Deficiencies and Limitations
- The Next Cluster Generation: COPACOBANA v2

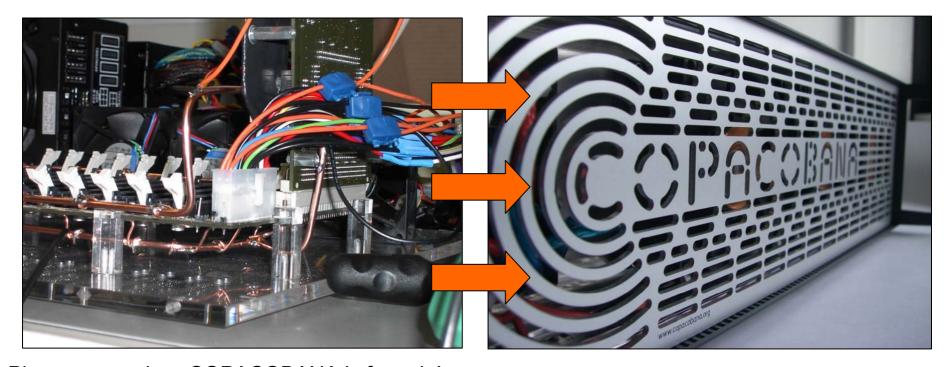

- New FPGA module for Spartan-3 5000 and (coming) Spartan-6
- Integrated PC (mini-ITX) inside the COPACOBANA housing
- Fast PCle-based bridge between PC and backplane (2 GBit/s)
- Simultaneous bus access using two PCle bridges
- Data distribution with two serial systolic rings
- Attached hard disk and 32 MBit RAM improves handling of large data

Next Generation of COPACOBANA II

- Production is scheduled to be finished in October 2009
 - First FPGA module is already available
- Data intensive attacks will benefit most of new design
 - TMTO attacks (A5/DES)
 - Password/Dictionary Attacks
 - ECM (with Spartan-6)
 - Distributed Pollard-Rho (also with Spartan-6)
 - Further assistence to index calculus/GNFS computations

Conclusion

- COPACOBANA has proved as a valuable tool to perform and to estimate real attacks on many cryptosystems (note that there are even some more that could not be published)
- New architecture eliminates obvious deficiencies concerning limited amount of logic, slow data exchange and lack of memory
- New Spartan-6 generation of FPGAs come with more logic, less power requirements and (important for arithmetic!) DSP blocks
- Further results (based on Spartan-3 5000) are hopefully available at the end of October!


Questions?

Thanks to Xilinx and SciEngines for their support!

Please remember: COPACOBANA is for sale! Just talk to Christof to purchase one or more ©