Cryptologic Applications of the PlayStation 3: Cell SPEED

Eran Tromer

Cell Broadband Engine

- 1 PowerPC core
 - Based on the PowerPC 970
 - 128-bit AltiVec/VMX SIMD unit
- Currently up to 8
 "synergistic processors"
- Runs at ~3.2 GHz

A Core2 core has three
 128-bit SIMD units with just
 16 registers.

Running DES on the Cell

- Bitsliced implementation of DES
 - 128-way parallelism per SPU
 - S-boxes optimized for SPU instruction set
- 4 Gbit/sec = 2²⁶ blocks/sec per SPU
- 32 Gbit/sec per Cell chip
- Can be used as a cryptographic accelerator (ECB, CTR, many CBC streams)

Breaking DES on the Cell

- Reduce the DES encryption from 16 rounds to the equivalent of ~9.5 rounds, by shortcircuit evaluation and early aborts.
- Performance:
 - 108M=2^{26.69} keys/sec per SPU
 - 864M=2^{29.69} keys/sec per Cell chip

Comparison to FPGA

Expected time to break:

- COPACOBANA
 - ~9 days
 - €8,980
 - A year to build
- 52 PlayStation 3 consoles
 - ~9 days
 - €19,500 (at US\$500 each)
 - Off-the-shelf
- Divide by two if you get $E_{\kappa}(X)$ and $E_{\kappa}(\overline{X})$.

Synergistic Processing Unit

- 256KB of fast local memory
- 128-bit, 128-register SIMD
- Two pipelines
- In-order execution
- Explicit DMA to RAM or other SPUs

SPU memory

- Single-ported
- 6-cycle load-to-use latency
- Read or write 16 or 128 bytes each cycle
- DMA & instruction fetch use 128-byte interface
- Prioritized: DMA > load/store > instruction fetch

SPU registers

- 128 registers
- Up to 77 register parameters and return values according to calling convention

SPU instruction set

- RISC (similar to PowerPC)
- Fixed 32-bit size
- Always aligned on 4-byte boundary
- Most operations are SIMD

SPU pipelines and latencies

Unit	Instructions	Execution Pipe	Unit Pipeline Depth	Instruction Latency
Simple Fixed	word arithmetic, logicals, count lead- ing zeros, selects, and compares	Even	2	2
Simple Fixed	word shifts and rotates	Even	3	4
Single Precision	multiply-accumulate	Even	6	6
Single Precision	integer multiply-accumulate	Even	7	7
Byte	pop count, absolute sum of differences, byte average, byte sum	Even	3	4
Permute	Quadword shifts, rotates, gathers, shuf- fles as well as reciprocal estimate	Odd	3	4
Local Store	Load and store	Odd	6	6
Channel	Channel Read/Write	Odd	5	6
Branch	Branches	Odd	3	4

SPU limitations

- Fetches 8-byte aligned pairs of instructions
 - Dual issue happens only if first is even-pipe instruction and second is odd-pipe instruction
- Only 16x16->32 integer multiplication
- No hardware branch prediction

Special SPU instructions

- select bits
- gather bits
- carry/borrow generate
 add/sub extended
- sum bytes
- generate controls for insertion

- shuffle bytes
- form select mask
- or across
- count leading zeros
- count ones in bytes

64-bit addition

- 2-way SIMD:
 - carry generate
 - add
 - shuffle bytes
 - add

- 4-way SIMD:
 - carry generate
 - add
 - add extended

64-bit rotate

- 2-way SIMD:
 - rotate words
 - shuffle bytes
 - select bits

- 4-way SIMD:
 - 2 * rotate words
 - 2 * select bits

selb

- Bitwise version of "a = b ? c : d"
- Also known as a multiplexer (mux)
- Very useful for bitslice computations
 - DES S-box average less than 40 instructions
 - Matthew Kwan: 51, without using selb

Comparison to Core2 for bitslice

CPU	SPU	Core2
Registers	128	16
Register width	128	128
Registers/instruction	3	2
Boolean operations	*+select	and, or, xor, andn
Instruction parallelism	1	3
Cores per chip	6-8	2-4

shufb

- Concatenate two input registers to form a 32byte lookup table
- Each byte in the third register selects either a constant value (0x00/0x80/0xFF) or a location in the lookup table
- => 16 table lookups per cycle

AES Table lookups in registers

- 5->8 bit lookups directly supported by shufb
- For the remaining 3 input bits we need to isolate and replicate them, and then use selb to select between 8 different shufb outputs
- High latency, but also high throughput with 4way interleaving

Cache attack resistance

- SPUs currently immune
 - no address-dependent variability in memory access
- Architecture allows cache in SPU
- In-register lookups should be future-proof

Branch prediction

- Calculate branch address
- Give branch target hint

•

Branch without penalty

Optimization summary

- Do vector (SIMD) processing
- Large number of registers allows interleaving several computations, hiding latencies
- Balance pipeline usage
- Pre-compute branches in time to give hint
- For very memory-intensive code, ensure instruction fetch by using hbrp

Running MD5 on the Cell

- 32-bit addition and rotation, boolean functions
 - Directly supported with 4-way SIMD
 - Bitslice is slow: 128 adds require 94 instructions
- Many streams in parallel hide latencies
- Calculated compression function performance:
 Up to 15.6 Gbit/s per SPU

Running AES on the Cell

- > 2.1 Gbit/s per SPU (~3.8 GHz Pentium 4)
- ~17 Gbit/s for full Cell, almost 13 Gbit/s for PS3
- CBC implementation only a little slower.
- Bitslice would be very interesting

Other cryptographic applications for the Cell Broadband Engine

- Limited by SPU microarchitecture and memory
- Good match for low-memory, straight-path computation over small operands
- Some promising applications:
 - Stream cipher cryptanalysis
 - Sieving for the Number Field Sieve
 - Hash collisions

The future of the Cell

- More SPUs on a chip
- Internal cache in SPUs
- Fast double precision float
- Different size of local memory?
- New instructions?

