A Jacobi intersection s^2 + c^2 = 1, a s^2 + d^2 = 1 is birationally equivalent to the Weierstrass-form elliptic curve y^2 = x^3 + (2-a)x^2 + (1-a)x. A typical point (s,c,d) on the Jacobi intersection corresponds to the point (x,y) on the Weierstrass curve defined by x = (d-1)(1-a)/p, y = s(1-a)a/p where p = ca-d+1-a.
Jacobi-intersection coordinates represent an affine point (s,c,d) on a Jacobi intersection s^2 + c^2 = 1, a s^2 + d^2 = 1 as (S:C:D:Z) satisfying S^2 + C^2 = Z^2, a S^2 + D^2 = Z^2. Here (S:C:D:Z) = (rS:rC:rD:rZ) for all nonzero r.
Speed records:
The following commands for the Magma computer-algebra system check various addition formulas for Jacobi-intersection coordinates.
Jacobi-intersection scaling.
K<a,S1,C1>:=FieldOfFractions(PolynomialRing(Rationals(),3));
R<D1,Z1>:=PolynomialRing(K,2);
S:=quo<R|S1^2+C1^2-Z1^2,a*S1^2+D1^2-Z1^2>;
// here are the formulas:
A:=1/Z1;
S2:=S1*A;
C2:=C1*A;
D2:=D1*A;
Z2:=1;
// check:
s1:=S1/Z1; c1:=C1/Z1; d1:=D1/Z1;
S!(s1^2+c1^2-1); S!(a*s1^2+d1^2-1);
s2:=S2/Z2; c2:=C2/Z2; d2:=D2/Z2;
S!(s2^2+c2^2-1); S!(a*s2^2+d2^2-1);
S!(Z2-1);
S!(s2-s1); S!(c2-c1); S!(d2-d1);
Jacobi-intersection negation.
K<a,s1>:=FieldOfFractions(PolynomialRing(Rationals(),2));
R<c1,d1>:=PolynomialRing(K,2);
S:=quo<R|s1^2+c1^2-1,a*s1^2+d1^2-1>;
// here are the formulas:
s2:=-s1;
c2:=c1;
d2:=d1;
// map to the Weierstrass curve:
p1:=c1*a-d1+1-a; x1:=(d1-1)*(1-a)/p1; y1:=s1*(1-a)*a/p1;
S!(y1^2-x1^3-(2-a)*x1^2-(1-a)*x1);
p2:=c2*a-d2+1-a; x2:=(d2-1)*(1-a)/p2; y2:=s2*(1-a)*a/p2;
S!(y2^2-x2^3-(2-a)*x2^2-(1-a)*x2);
// check the answer:
S!(x2-x1); S!(y2+y1);
Jacobi-intersection addition (13M+2S+1D+7add) matches traditional addition. Multiplication counts stated in the literature: 17 in 1986 Chudnovsky/Chudnovsky, formula (4.9i) ("17 multiplications, including one multiplication by a constant"). 16 in 2001 Liardet/Smart, page 396 ("16 field multiplications"). 16 in 2007 Bernstein/Lange.
1986 Chudnovsky/Chudnovsky, formula (4.9i), specialized to affine, strongly unified:
// beware that this calculation takes days! nice computer-algebra benchmark
K<a,s1,s2>:=FieldOfFractions(PolynomialRing(Rationals(),3));
R<c1,c2,d1,d2>:=PolynomialRing(K,4);
S:=quo<R|s1^2+c1^2-1,a*s1^2+d1^2-1,s2^2+c2^2-1,a*s2^2+d2^2-1>;
// here are the formulas:
r:=c2^2+(d1*s2)^2;
s3:=(c2*s1*d2+d1*s2*c1)/r;
c3:=(c2*c1-d1*s2*s1*d2)/r;
d3:=(d1*d2-a*s1*c1*s2*c2)/r;
// map to the Weierstrass curve:
p1:=c1*a-d1+1-a; x1:=(d1-1)*(1-a)/p1; y1:=s1*(1-a)*a/p1;
S!(y1^2-x1^3-(2-a)*x1^2-(1-a)*x1);
p2:=c2*a-d2+1-a; x2:=(d2-1)*(1-a)/p2; y2:=s2*(1-a)*a/p2;
S!(y2^2-x2^3-(2-a)*x2^2-(1-a)*x2);
p3:=c3*a-d3+1-a; x3:=(d3-1)*(1-a)/p3; y3:=s3*(1-a)*a/p3;
S!(y3^2-x3^3-(2-a)*x3^2-(1-a)*x3);
// add on the Weierstrass curve:
lambda:=(y2-y1)/(x2-x1);
r3:=lambda^2-(2-a)-x1-x2; s3:=lambda*(x1-r3)-y1;
// check the answer:
S!(x3-r3); S!(y3-s3);
1986 Chudnovsky/Chudnovsky, formula (4.9i), strongly unified:
K<a,S1,C1,S2,C2>:=FieldOfFractions(PolynomialRing(Rationals(),5));
R<D1,Z1,D2,Z2>:=PolynomialRing(K,4);
S:=quo<R|S1^2+C1^2-Z1^2,a*S1^2+D1^2-Z1^2,S2^2+C2^2-Z2^2,a*S2^2+D2^2-Z2^2>;
// affine:
s1:=S1/Z1; c1:=C1/Z1; d1:=D1/Z1;
S!(s1^2+c1^2-1); S!(a*s1^2+d1^2-1);
s2:=S2/Z2; c2:=C2/Z2; d2:=D2/Z2;
S!(s2^2+c2^2-1); S!(a*s2^2+d2^2-1);
r:=c2^2+(d1*s2)^2;
s3:=(c2*s1*d2+d1*s2*c1)/r;
c3:=(c2*c1-d1*s2*s1*d2)/r;
d3:=(d1*d2-a*s1*c1*s2*c2)/r;
S!(s3^2+c3^2-1); S!(a*s3^2+d3^2-1);
// here are the formulas:
S3:=Z1*C2*S1*D2+D1*S2*C1*Z2;
C3:=Z1*C2*C1*Z2-D1*S2*S1*D2;
D3:=Z1*D1*Z2*D2-a*S1*C1*S2*C2;
Z3:=(Z1*C2)^2+(D1*S2)^2;
S!(s3-S3/Z3); S!(c3-C3/Z3); S!(d3-D3/Z3);
1986 Chudnovsky/Chudnovsky, formula (4.9i),
common subexpressions eliminated,
14M + 2S + 1D + 4add,
strongly unified:
K<a,S1,C1,S2,C2>:=FieldOfFractions(PolynomialRing(Rationals(),5));
R<D1,Z1,D2,Z2>:=PolynomialRing(K,4);
S:=quo<R|S1^2+C1^2-Z1^2,a*S1^2+D1^2-Z1^2,S2^2+C2^2-Z2^2,a*S2^2+D2^2-Z2^2>;
s1:=S1/Z1; c1:=C1/Z1; d1:=D1/Z1;
S!(s1^2+c1^2-1); S!(a*s1^2+d1^2-1);
s2:=S2/Z2; c2:=C2/Z2; d2:=D2/Z2;
S!(s2^2+c2^2-1); S!(a*s2^2+d2^2-1);
r:=c2^2+(d1*s2)^2;
s3:=(c2*s1*d2+d1*s2*c1)/r;
c3:=(c2*c1-d1*s2*s1*d2)/r;
d3:=(d1*d2-a*s1*c1*s2*c2)/r;
S!(s3^2+c3^2-1); S!(a*s3^2+d3^2-1);
// here are the formulas:
Z1C2:=Z1*C2;
S1D2:=S1*D2;
D1S2:=D1*S2;
C1Z2:=C1*Z2;
S3:=Z1C2*S1D2+D1S2*C1Z2;
C3:=Z1C2*C1Z2-D1S2*S1D2;
D3:=Z1*D1*Z2*D2-a*S1*C1*S2*C2;
Z3:=Z1C2^2+D1S2^2;
S!(s3-S3/Z3); S!(c3-C3/Z3); S!(d3-D3/Z3);
13M + 2S + 1D + 7add,
strongly unified:
K<a,S1,C1,S2,C2>:=FieldOfFractions(PolynomialRing(Rationals(),5));
R<D1,Z1,D2,Z2>:=PolynomialRing(K,4);
S:=quo<R|S1^2+C1^2-Z1^2,a*S1^2+D1^2-Z1^2,S2^2+C2^2-Z2^2,a*S2^2+D2^2-Z2^2>;
s1:=S1/Z1; c1:=C1/Z1; d1:=D1/Z1;
S!(s1^2+c1^2-1); S!(a*s1^2+d1^2-1);
s2:=S2/Z2; c2:=C2/Z2; d2:=D2/Z2;
S!(s2^2+c2^2-1); S!(a*s2^2+d2^2-1);
r:=c2^2+(d1*s2)^2;
s3:=(c2*s1*d2+d1*s2*c1)/r;
c3:=(c2*c1-d1*s2*s1*d2)/r;
d3:=(d1*d2-a*s1*c1*s2*c2)/r;
S!(s3^2+c3^2-1); S!(a*s3^2+d3^2-1);
// here are the formulas:
Z1C2:=Z1*C2;
S1D2:=S1*D2;
D1S2:=D1*S2;
C1Z2:=C1*Z2;
U:=Z1C2*C1Z2;
V:=D1S2*S1D2;
S3:=(Z1C2+D1S2)*(C1Z2+S1D2)-U-V;
C3:=U-V;
D3:=Z1*D1*Z2*D2-a*S1*C1*S2*C2;
Z3:=Z1C2^2+D1S2^2;
S!(s3-S3/Z3); S!(c3-C3/Z3); S!(d3-D3/Z3);
11M + 2S + 1D + 7add after 2M for caching,
strongly unified:
K<a,S1,C1,S2,C2>:=FieldOfFractions(PolynomialRing(Rationals(),5));
R<D1,Z1,D2,Z2>:=PolynomialRing(K,4);
S:=quo<R|S1^2+C1^2-Z1^2,a*S1^2+D1^2-Z1^2,S2^2+C2^2-Z2^2,a*S2^2+D2^2-Z2^2>;
s1:=S1/Z1; c1:=C1/Z1; d1:=D1/Z1;
S!(s1^2+c1^2-1); S!(a*s1^2+d1^2-1);
s2:=S2/Z2; c2:=C2/Z2; d2:=D2/Z2;
S!(s2^2+c2^2-1); S!(a*s2^2+d2^2-1);
r:=c2^2+(d1*s2)^2;
s3:=(c2*s1*d2+d1*s2*c1)/r;
c3:=(c2*c1-d1*s2*s1*d2)/r;
d3:=(d1*d2-a*s1*c1*s2*c2)/r;
S!(s3^2+c3^2-1); S!(a*s3^2+d3^2-1);
// here are the formulas:
// cached:
Z2D2:=Z2*D2;
S2C2:=S2*C2;
// uncached:
Z1C2:=Z1*C2;
S1D2:=S1*D2;
D1S2:=D1*S2;
C1Z2:=C1*Z2;
U:=Z1C2*C1Z2;
V:=D1S2*S1D2;
S3:=(Z1C2+D1S2)*(C1Z2+S1D2)-U-V;
C3:=U-V;
D3:=Z1*D1*Z2D2-a*S1*C1*S2C2;
Z3:=Z1C2^2+D1S2^2;
S!(s3-S3/Z3); S!(c3-C3/Z3); S!(d3-D3/Z3);
Jacobi-intersection mixed addition (11M+2S+1D+7add) matches traditional addition. 2001 Liardet/Smart, substituting Z2=1 in the above, 11M + 2S + 1D + 7add:
K<a,S1,C1,S2>:=FieldOfFractions(PolynomialRing(Rationals(),4));
R<D1,Z1,C2,D2>:=PolynomialRing(K,4);
Z2:=1;
S:=quo<R|S1^2+C1^2-Z1^2,a*S1^2+D1^2-Z1^2,S2^2+C2^2-Z2^2,a*S2^2+D2^2-Z2^2>;
s1:=S1/Z1; c1:=C1/Z1; d1:=D1/Z1;
S!(s1^2+c1^2-1); S!(a*s1^2+d1^2-1);
s2:=S2/Z2; c2:=C2/Z2; d2:=D2/Z2;
S!(s2^2+c2^2-1); S!(a*s2^2+d2^2-1);
r:=c2^2+(d1*s2)^2;
s3:=(c2*s1*d2+d1*s2*c1)/r;
c3:=(c2*c1-d1*s2*s1*d2)/r;
d3:=(d1*d2-a*s1*c1*s2*c2)/r;
S!(s3^2+c3^2-1); S!(a*s3^2+d3^2-1);
// here are the formulas:
Z1C2:=Z1*C2;
S1D2:=S1*D2;
D1S2:=D1*S2;
U:=Z1C2*C1;
V:=D1S2*S1D2;
S3:=(Z1C2+D1S2)*(C1+S1D2)-U-V;
C3:=U-V;
D3:=Z1*D1*D2-a*S1*C1*S2*C2;
Z3:=Z1C2^2+D1S2^2;
S!(s3-S3/Z3); S!(c3-C3/Z3); S!(d3-D3/Z3);
Jacobi-intersection addition with S2=1 (11M + 2S + 1D + 7add) matches traditional addition. Substituting S2=1 in the above (as suggested by 2007 Hisil/Carter/Dawson), 10M + 2S + 1D + 7add after 1M to cache Z2*D2:
K<a,S1,C1,C2>:=FieldOfFractions(PolynomialRing(Rationals(),4));
R<Z1,D1,Z2,D2>:=PolynomialRing(K,4);
S2:=1;
S:=quo<R|S1^2+C1^2-Z1^2,a*S1^2+D1^2-Z1^2,S2^2+C2^2-Z2^2,a*S2^2+D2^2-Z2^2>;
s1:=S1/Z1; c1:=C1/Z1; d1:=D1/Z1;
S!(s1^2+c1^2-1); S!(a*s1^2+d1^2-1);
s2:=S2/Z2; c2:=C2/Z2; d2:=D2/Z2;
S!(s2^2+c2^2-1); S!(a*s2^2+d2^2-1);
r:=c2^2+(d1*s2)^2;
s3:=(c2*s1*d2+d1*s2*c1)/r;
c3:=(c2*c1-d1*s2*s1*d2)/r;
d3:=(d1*d2-a*s1*c1*s2*c2)/r;
S!(s3^2+c3^2-1); S!(a*s3^2+d3^2-1);
// cached:
Z2D2:=Z2*D2;
// uncached:
E:=Z1*C2;
F:=S1*D2;
G:=C1*Z2;
H:=E*G;
J:=D1*F;
S3:=(E+D1)*(G+F)-H-J;
C3:=H-J;
D3:=Z1*D1*Z2D2-a*S1*C1*C2;
Z3:=E^2+D1^2;
// check:
S!(s3-S3/Z3); S!(c3-C3/Z3); S!(d3-D3/Z3);
Jacobi-intersection addition with Z1=1 and Z2=1. 2001 Liardet/Smart, substituting Z1=1 and Z2=1 in the addition formula 8M + 2S + 1D + 7add:
K<a,S1,S2>:=FieldOfFractions(PolynomialRing(Rationals(),3));
R<C1,D1,C2,D2>:=PolynomialRing(K,4);
Z1:=1;Z2:=1;
S:=quo<R|S1^2+C1^2-Z1^2,a*S1^2+D1^2-Z1^2,S2^2+C2^2-Z2^2,a*S2^2+D2^2-Z2^2>;
s1:=S1/Z1; c1:=C1/Z1; d1:=D1/Z1;
S!(s1^2+c1^2-1); S!(a*s1^2+d1^2-1);
s2:=S2/Z2; c2:=C2/Z2; d2:=D2/Z2;
S!(s2^2+c2^2-1); S!(a*s2^2+d2^2-1);
r:=c2^2+(d1*s2)^2;
s3:=(c2*s1*d2+d1*s2*c1)/r;
c3:=(c2*c1-d1*s2*s1*d2)/r;
d3:=(d1*d2-a*s1*c1*s2*c2)/r;
S!(s3^2+c3^2-1); S!(a*s3^2+d3^2-1);
// here are the formulas:
S1D2:=S1*D2;
D1S2:=D1*S2;
U:=C2*C1;
V:=D1S2*S1D2;
S3:=(C2+D1S2)*(C1+S1D2)-U-V;
C3:=U-V;
D3:=D1*D2-a*S1*S2*U;
Z3:=C2^2+D1S2^2;
S!(s3-S3/Z3); S!(c3-C3/Z3); S!(d3-D3/Z3);
Jacobi-intersection doubling (3M+4S+5add+1times2) matches traditional doubling. Multiplication counts stated in the literature: 8 in 1986 Chudnovsky/Chudnovsky. 7 in 2001 Liardet/Smart ("seven field multiplications"). 7 in 2007 Bernstein/Lange.
S,M counts stated in the literature: 5M+3S in 1986 Chudnovsky/Chudnovsky ("8 ... 3 of which are squaring"). 3M+4S in 2007 Bernstein/Lange.
1986 Chudnovsky/Chudnovsky, formula (4.9i), specialized to affine, strongly unified:
K<a,s1>:=FieldOfFractions(PolynomialRing(Rationals(),2));
R<c1,d1>:=PolynomialRing(K,2);
s2:=s1; c2:=c1; d2:=d1;
S:=quo<R|s1^2+c1^2-1,a*s1^2+d1^2-1>;
// here are the formulas:
r:=c2^2+(d1*s2)^2;
s3:=(c2*s1*d2+d1*s2*c1)/r;
c3:=(c2*c1-d1*s2*s1*d2)/r;
d3:=(d1*d2-a*s1*c1*s2*c2)/r;
// map to the Weierstrass curve:
p1:=c1*a-d1+1-a; x1:=(d1-1)*(1-a)/p1; y1:=s1*(1-a)*a/p1;
S!(y1^2-x1^3-(2-a)*x1^2-(1-a)*x1);
p2:=c2*a-d2+1-a; x2:=(d2-1)*(1-a)/p2; y2:=s2*(1-a)*a/p2;
S!(y2^2-x2^3-(2-a)*x2^2-(1-a)*x2);
p3:=c3*a-d3+1-a; x3:=(d3-1)*(1-a)/p3; y3:=s3*(1-a)*a/p3;
S!(y3^2-x3^3-(2-a)*x3^2-(1-a)*x3);
// double on the Weierstrass curve:
lambda:=(3*x1^2+2*(2-a)*x1+(1-a))/(2*y1);
r3:=lambda^2-(2-a)-x1-x2; s3:=lambda*(x1-r3)-y1;
// check the answer:
S!(x3-r3); S!(y3-s3);
1986 Chudnovsky/Chudnovsky, formula (4.9i), strongly unified:
K<a,S1,C1>:=FieldOfFractions(PolynomialRing(Rationals(),3));
R<D1,Z1>:=PolynomialRing(K,2);
S2:=S1; C2:=C1; D2:=D1; Z2:=Z1;
S:=quo<R|S1^2+C1^2-Z1^2,a*S1^2+D1^2-Z1^2>;
// affine:
s1:=S1/Z1; c1:=C1/Z1; d1:=D1/Z1;
s2:=S2/Z2; c2:=C2/Z2; d2:=D2/Z2;
r:=c2^2+(d1*s2)^2;
s3:=(c2*s1*d2+d1*s2*c1)/r;
c3:=(c2*c1-d1*s2*s1*d2)/r;
d3:=(d1*d2-a*s1*c1*s2*c2)/r;
S!(s3^2+c3^2-1); S!(a*s3^2+d3^2-1);
// here are the formulas:
S3:=Z1*C2*S1*D2+D1*S2*C1*Z2;
C3:=Z1*C2*C1*Z2-D1*S2*S1*D2;
D3:=Z1*D1*Z2*D2-a*S1*C1*S2*C2;
Z3:=(Z1*C2)^2+(D1*S2)^2;
S!(s3-S3/Z3); S!(c3-C3/Z3); S!(d3-D3/Z3);
1986 Chudnovsky/Chudnovsky, formula (4.9i),
common subexpressions eliminated,
14M + 2S + 1D + 4add,
strongly unified:
K<a,S1,C1>:=FieldOfFractions(PolynomialRing(Rationals(),3));
R<D1,Z1>:=PolynomialRing(K,2);
S2:=S1; C2:=C1; D2:=D1; Z2:=Z1;
S:=quo<R|S1^2+C1^2-Z1^2,a*S1^2+D1^2-Z1^2>;
// affine:
s1:=S1/Z1; c1:=C1/Z1; d1:=D1/Z1;
s2:=S2/Z2; c2:=C2/Z2; d2:=D2/Z2;
r:=c2^2+(d1*s2)^2;
s3:=(c2*s1*d2+d1*s2*c1)/r;
c3:=(c2*c1-d1*s2*s1*d2)/r;
d3:=(d1*d2-a*s1*c1*s2*c2)/r;
S!(s3^2+c3^2-1); S!(a*s3^2+d3^2-1);
// here are the formulas:
Z1C2:=Z1*C2;
S1D2:=S1*D2;
D1S2:=D1*S2;
C1Z2:=C1*Z2;
S3:=Z1C2*S1D2+D1S2*C1Z2;
C3:=Z1C2*C1Z2-D1S2*S1D2;
D3:=Z1*D1*Z2*D2-a*S1*C1*S2*C2;
Z3:=Z1C2^2+D1S2^2;
S!(s3-S3/Z3); S!(c3-C3/Z3); S!(d3-D3/Z3);
13M + 2S + 1D + 7add,
strongly unified:
K<a,S1,C1>:=FieldOfFractions(PolynomialRing(Rationals(),3));
R<D1,Z1>:=PolynomialRing(K,2);
S2:=S1; C2:=C1; D2:=D1; Z2:=Z1;
S:=quo<R|S1^2+C1^2-Z1^2,a*S1^2+D1^2-Z1^2>;
// affine:
s1:=S1/Z1; c1:=C1/Z1; d1:=D1/Z1;
s2:=S2/Z2; c2:=C2/Z2; d2:=D2/Z2;
r:=c2^2+(d1*s2)^2;
s3:=(c2*s1*d2+d1*s2*c1)/r;
c3:=(c2*c1-d1*s2*s1*d2)/r;
d3:=(d1*d2-a*s1*c1*s2*c2)/r;
S!(s3^2+c3^2-1); S!(a*s3^2+d3^2-1);
// here are the formulas:
Z1C2:=Z1*C2;
S1D2:=S1*D2;
D1S2:=D1*S2;
C1Z2:=C1*Z2;
U:=Z1C2*C1Z2;
V:=D1S2*S1D2;
S3:=(Z1C2+D1S2)*(C1Z2+S1D2)-U-V;
C3:=U-V;
D3:=Z1*D1*Z2*D2-a*S1*C1*S2*C2;
Z3:=Z1C2^2+D1S2^2;
S!(s3-S3/Z3); S!(c3-C3/Z3); S!(d3-D3/Z3);
2M cached plus 11M + 2S + 1D + 7add uncached,
strongly unified:
K<a,S1,C1>:=FieldOfFractions(PolynomialRing(Rationals(),3));
R<D1,Z1>:=PolynomialRing(K,2);
S2:=S1; C2:=C1; D2:=D1; Z2:=Z1;
S:=quo<R|S1^2+C1^2-Z1^2,a*S1^2+D1^2-Z1^2>;
s1:=S1/Z1; c1:=C1/Z1; d1:=D1/Z1;
S!(s1^2+c1^2-1); S!(a*s1^2+d1^2-1);
s2:=S2/Z2; c2:=C2/Z2; d2:=D2/Z2;
S!(s2^2+c2^2-1); S!(a*s2^2+d2^2-1);
r:=c2^2+(d1*s2)^2;
s3:=(c2*s1*d2+d1*s2*c1)/r;
c3:=(c2*c1-d1*s2*s1*d2)/r;
d3:=(d1*d2-a*s1*c1*s2*c2)/r;
S!(s3^2+c3^2-1); S!(a*s3^2+d3^2-1);
// here are the formulas:
// cached:
Z2D2:=Z2*D2;
S2C2:=S2*C2;
// uncached:
Z1C2:=Z1*C2;
S1D2:=S1*D2;
D1S2:=D1*S2;
C1Z2:=C1*Z2;
U:=Z1C2*C1Z2;
V:=D1S2*S1D2;
S3:=(Z1C2+D1S2)*(C1Z2+S1D2)-U-V;
C3:=U-V;
D3:=Z1*D1*Z2D2-a*S1*C1*S2C2;
Z3:=Z1C2^2+D1S2^2;
S!(s3-S3/Z3); S!(c3-C3/Z3); S!(d3-D3/Z3);
1986 Chudnovsky/Chudnovksy, formula 4.9ii:
K<a,S1,C1>:=FieldOfFractions(PolynomialRing(Rationals(),3));
R<D1,Z1>:=PolynomialRing(K,2);
S2:=S1; C2:=C1; D2:=D1; Z2:=Z1;
S:=quo<R|S1^2+C1^2-Z1^2,a*S1^2+D1^2-Z1^2>;
// affine:
s1:=S1/Z1; c1:=C1/Z1; d1:=D1/Z1;
s2:=S2/Z2; c2:=C2/Z2; d2:=D2/Z2;
r:=c2^2+(d1*s2)^2;
s3:=(c2*s1*d2+d1*s2*c1)/r;
c3:=(c2*c1-d1*s2*s1*d2)/r;
d3:=(d1*d2-a*s1*c1*s2*c2)/r;
S!(s3^2+c3^2-1); S!(a*s3^2+d3^2-1);
// here are the formulas:
S3:=2*C1*Z1*D1*S1;
C3:=(C1*Z1)^2-(D1*Z1)^2+(C1*D1)^2;
D3:=(D1*Z1)^2-(C1*Z1)^2+(C1*D1)^2;
Z3:=(D1*Z1)^2+(C1*Z1)^2-(C1*D1)^2;
S!(s3-S3/Z3); S!(c3-C3/Z3); S!(d3-D3/Z3);
1986 Chudnovsky/Chudnovksy, formula 4.9ii,
eliminating common subexpressions,
5M + 3S + 5add + 1times2:
K<a,S1,C1>:=FieldOfFractions(PolynomialRing(Rationals(),3));
R<D1,Z1>:=PolynomialRing(K,2);
S2:=S1; C2:=C1; D2:=D1; Z2:=Z1;
S:=quo<R|S1^2+C1^2-Z1^2,a*S1^2+D1^2-Z1^2>;
// affine:
s1:=S1/Z1; c1:=C1/Z1; d1:=D1/Z1;
s2:=S2/Z2; c2:=C2/Z2; d2:=D2/Z2;
r:=c2^2+(d1*s2)^2;
s3:=(c2*s1*d2+d1*s2*c1)/r;
c3:=(c2*c1-d1*s2*s1*d2)/r;
d3:=(d1*d2-a*s1*c1*s2*c2)/r;
S!(s3^2+c3^2-1); S!(a*s3^2+d3^2-1);
// here are the formulas:
C1Z1:=C1*Z1;
C1D1:=C1*D1;
D1Z1:=D1*Z1;
D1S1:=D1*S1;
U:=C1Z1^2;
V:=C1D1^2;
W:=D1Z1^2;
UV:=U-V;
S3:=2*C1Z1*D1S1;
C3:=U-W+V;
D3:=W-UV;
Z3:=W+UV;
S!(s3-S3/Z3); S!(c3-C3/Z3); S!(d3-D3/Z3);
2001 Liardet/Smart, page 397,
4M + 3S + 5add + 3times2:
K<a,S1,C1>:=FieldOfFractions(PolynomialRing(Rationals(),3));
R<D1,Z1>:=PolynomialRing(K,2);
S2:=S1; C2:=C1; D2:=D1; Z2:=Z1;
S:=quo<R|S1^2+C1^2-Z1^2,a*S1^2+D1^2-Z1^2>;
// affine:
s1:=S1/Z1; c1:=C1/Z1; d1:=D1/Z1;
s2:=S2/Z2; c2:=C2/Z2; d2:=D2/Z2;
r:=c2^2+(d1*s2)^2;
s3:=(c2*s1*d2+d1*s2*c1)/r;
c3:=(c2*c1-d1*s2*s1*d2)/r;
d3:=(d1*d2-a*s1*c1*s2*c2)/r;
S!(s3^2+c3^2-1); S!(a*s3^2+d3^2-1);
// here are the formulas:
a0:=S1;
a1:=C1;
a2:=D1;
a3:=Z1;
l1:=a3*a1;
l2:=a0*a2;
l3:=2*(a1*a2)^2;
r0:=2*l1*l2;
r3:=(l1+l2)^2-r0;
r1:=r3-2*l2^2;
r2:=-r1+l3;
S3:=r0;
C3:=r1;
D3:=r2;
Z3:=r3;
S!(s3-S3/Z3); S!(c3-C3/Z3); S!(d3-D3/Z3);
2007 Bernstein/Lange,
3M + 4S + 5add + 1times2:
K<a,S1,C1>:=FieldOfFractions(PolynomialRing(Rationals(),3));
R<D1,Z1>:=PolynomialRing(K,2);
S2:=S1; C2:=C1; D2:=D1; Z2:=Z1;
S:=quo<R|S1^2+C1^2-Z1^2,a*S1^2+D1^2-Z1^2>;
// affine:
s1:=S1/Z1; c1:=C1/Z1; d1:=D1/Z1;
s2:=S2/Z2; c2:=C2/Z2; d2:=D2/Z2;
r:=c2^2+(d1*s2)^2;
s3:=(c2*s1*d2+d1*s2*c1)/r;
c3:=(c2*c1-d1*s2*s1*d2)/r;
d3:=(d1*d2-a*s1*c1*s2*c2)/r;
S!(s3^2+c3^2-1); S!(a*s3^2+d3^2-1);
// here are the formulas:
a0:=S1;
a1:=C1;
a2:=D1;
a3:=Z1;
l1:=a3*a1;
m:=l1^2;
l2:=a0*a2;
n:=l2^2;
l3:=2*(a1*a2)^2;
r3:=m+n;
r0:=(l1+l2)^2-r3;
r1:=m-n;
r2:=l3-r1;
S3:=r0;
C3:=r1;
D3:=r2;
Z3:=r3;
S!(s3-S3/Z3); S!(c3-C3/Z3); S!(d3-D3/Z3);
Jacobi-intersection doubling with Z1=1. 2007 Bernstein/Lange, 2M + 4S + 5add + 1times2:
K<a,S1>:=FieldOfFractions(PolynomialRing(Rationals(),2));
R<C1,D1>:=PolynomialRing(K,2);
Z1:=1; S2:=S1; C2:=C1; D2:=D1; Z2:=Z1;
S:=quo<R|S1^2+C1^2-Z1^2,a*S1^2+D1^2-Z1^2>;
// affine:
s1:=S1/Z1; c1:=C1/Z1; d1:=D1/Z1;
s2:=S2/Z2; c2:=C2/Z2; d2:=D2/Z2;
r:=c2^2+(d1*s2)^2;
s3:=(c2*s1*d2+d1*s2*c1)/r;
c3:=(c2*c1-d1*s2*s1*d2)/r;
d3:=(d1*d2-a*s1*c1*s2*c2)/r;
S!(s3^2+c3^2-1); S!(a*s3^2+d3^2-1);
// here are the formulas:
a0:=S1;
a1:=C1;
a2:=D1;
m:=a1^2;
l2:=a0*a2;
n:=l2^2;
l3:=2*(a1*a2)^2;
r3:=m+n;
r0:=(a1+l2)^2-r3;
r1:=m-n;
r2:=l3-r1;
S3:=r0;
C3:=r1;
D3:=r2;
Z3:=r3;
S!(s3-S3/Z3); S!(c3-C3/Z3); S!(d3-D3/Z3);
Jacobi-intersection tripling (4M + 10S + 6D + 29add + 6times2 + 1times3) matches traditional tripling. 2007 Hisil/Carter/Dawson:
K<a,S1,C1>:=FieldOfFractions(PolynomialRing(Rationals(),3));
b:=a-1;
R<D1,Z1>:=PolynomialRing(K,2);
S:=quo<R|S1^2+C1^2-Z1^2,a*S1^2+D1^2-Z1^2>;
// affine:
s1:=S1/Z1; c1:=C1/Z1; d1:=D1/Z1;
r:=c1^2+(d1*s1)^2;
s2:=(c1*s1*d1+d1*s1*c1)/r;
c2:=(c1*c1-d1*s1*s1*d1)/r;
d2:=(d1*d1-a*s1*c1*s1*c1)/r;
S!(s2^2+c2^2-1); S!(a*s2^2+d2^2-1);
r:=c2^2+(d1*s2)^2;
s3:=(c2*s1*d2+d1*s2*c1)/r;
c3:=(c2*c1-d1*s2*s1*d2)/r;
d3:=(d1*d2-a*s1*c1*s2*c2)/r;
S!(s3^2+c3^2-1); S!(a*s3^2+d3^2-1);
// here are the formulas:
E := S1^2;
F := C1^2;
G := E^2;
H := F^2;
J := 2*H;
K := 2*J;
L := (2*F+E)^2-G-K;
M := b*G;
N := K+J;
P := M^2;
R := N*M;
U := M*L;
V := H^2;
W := H*L;
S3 := S1*(R+b*W+2*(P-V)-W-P-V);
C3 := C1*(2*(P-V)-U+P+V-R+b*U);
D3 := D1*(U-P-V+R+b*W);
Z3 := Z1*(R-b*U-W-P-V);
// check:
S!(s3-S3/Z3); S!(c3-C3/Z3); S!(d3-D3/Z3);
2007 Hisil/Carter/Dawson, 7M + 7S + 3D + 16add + 4times2:
K<a,S1,C1>:=FieldOfFractions(PolynomialRing(Rationals(),3));
b:=a-1;
R<D1,Z1>:=PolynomialRing(K,2);
S:=quo<R|S1^2+C1^2-Z1^2,a*S1^2+D1^2-Z1^2>;
// affine:
s1:=S1/Z1; c1:=C1/Z1; d1:=D1/Z1;
r:=c1^2+(d1*s1)^2;
s2:=(c1*s1*d1+d1*s1*c1)/r;
c2:=(c1*c1-d1*s1*s1*d1)/r;
d2:=(d1*d1-a*s1*c1*s1*c1)/r;
S!(s2^2+c2^2-1); S!(a*s2^2+d2^2-1);
r:=c2^2+(d1*s2)^2;
s3:=(c2*s1*d2+d1*s2*c1)/r;
c3:=(c2*c1-d1*s2*s1*d2)/r;
d3:=(d1*d2-a*s1*c1*s2*c2)/r;
S!(s3^2+c3^2-1); S!(a*s3^2+d3^2-1);
// here are the formulas:
R0 := S1^2;
R1 := C1^2;
R2 := R0^2;
R3 := R1^2;
R4 := 2*R3;
R5 := 2*R4;
R6 := 2*R1;
R6 := R6+R0;
R6 := R6^2;
R6 := R6-R2;
R6 := R6-R5;
R2 := b*R2;
R5 := R5+R4;
R4 := R2^2;
R0 := R5*R2;
R5 := R2*R6;
R2 := R3^2;
R1 := R3*R6;
R3 := R4-R2;
R2 := R4+R2;
R4 := 2*R3;
R3 := b*R1;
R6 := b*R5;
R3 := R0+R3;
R1 := R1+R2;
R0 := R0-R6;
R2 := R5-R2;
R5 := R3+R4;
R5 := R5-R1;
S3 := S1*R5;
R4 := R4-R2;
R4 := R4-R0;
C3 := C1*R4;
R2 := R2+R3;
D3 := D1*R2;
R0 := R0-R1;
Z3 := Z1*R0;
// check:
S!(s3-S3/Z3); S!(c3-C3/Z3); S!(d3-D3/Z3);
2007 Hisil/Carter/Dawson, 4M + 10S + 6D + 29add + 6times2 + 1times3:
K<a,S1,C1>:=FieldOfFractions(PolynomialRing(Rationals(),3));
b:=a-1;
R<D1,Z1>:=PolynomialRing(K,2);
SS:=quo<R|S1^2+C1^2-Z1^2,a*S1^2+D1^2-Z1^2>;
// affine:
s1:=S1/Z1; c1:=C1/Z1; d1:=D1/Z1;
r:=c1^2+(d1*s1)^2;
s2:=(c1*s1*d1+d1*s1*c1)/r;
c2:=(c1*c1-d1*s1*s1*d1)/r;
d2:=(d1*d1-a*s1*c1*s1*c1)/r;
SS!(s2^2+c2^2-1); SS!(a*s2^2+d2^2-1);
r:=c2^2+(d1*s2)^2;
s3:=(c2*s1*d2+d1*s2*c1)/r;
c3:=(c2*c1-d1*s2*s1*d2)/r;
d3:=(d1*d2-a*s1*c1*s2*c2)/r;
SS!(s3^2+c3^2-1); SS!(a*s3^2+d3^2-1);
// here are the formulas:
E:=S1^2;
F:=C1^2;
G:=E^2;
H:=F^2;
J:=G^2;
K:=H^2;
L:=(E+F)^2-H-G;
M:=L^2;
N:=(G+L)^2-J-M;
P:=(H+L)^2-K-M;
R:=2*b*b*J;
S:=2*b*N;
Z:=3*b*M;
U:=2*P;
V:=2*K;
W:=a*U;
Y:=a*S;
S3:=S1*((R-V)+(Z+W)-2*(U+V));
C3:=C1*((R-V)-(Z-Y)+2*(R-S));
D3:=D1*((Z+W)-(R-S)-(U+V));
Z3:=Z1*((Z-Y)-(R-S)-(U+V));
// check:
SS!(s3-S3/Z3); SS!(c3-C3/Z3); SS!(d3-D3/Z3);