d1*(x+y)+d2*(x^2+y^2)=(x+x^2)*(y+y^2)
Affine coordinates with d1=d2 [database entry] make the additional assumptions
d1=d2and represent x y as X Y satisfying the following equations:
x=X y=Y
| Operation | Assumptions | Cost | Readdition cost |
|---|---|---|---|
| addition | 2I + 8M + 2S + 2*d1 + 1*d2 | 2I + 7M + 2S + 2*d1 + 1*d2 | |
| doubling | 1I + 1M + 4S + 2*d1 | ||
| doubling | d2d1=d2/d1 | 1I + 2M + 4S + 1*d2 + 1*d2d1 | |
| doubling | 4I + 4M + 10S + 6^4 + 4*d2 | ||
| scaling | 0M |
w1 = X1+Y1
w2 = X2+Y2
A = X1^2+X1
B = Y1^2+Y1
C = d2*w1*w2
D = X2*Y2
X3 = Y1+(C+d1*(w1+X2)+A*(D+X2))/(d1+A*w2)
Y3 = X1+(C+d1*(w1+Y2)+B*(D+Y2))/(d1+B*w2)
A = X1^2
B = A^2
C = Y1^2
D = C^2
E = A+C
F = 1/(d1+E+B+D)
X3 = (d1*E+A+B)*F
Y3 = X3+1+d1*F
A = X1^2
B = A^2
C = Y1^2
D = C^2
E = A+C
F = B+D
G = 1/(d1+E+d2d1*F)
X3 = 1+(d1+d2*E+C+D)*G
Y3 = X3+(E+F)*G
X3 = 1+(d1+d2*(X1^2+Y1^2)+Y1^2+Y1^4)/(d1+X1^2+Y1^2+(d2/d1)*(X1^4+Y1^4))
Y3 = 1+(d1+d2*(X1^2+Y1^2)+X1^2+X1^4)/(d1+X1^2+Y1^2+(d2/d1)*(X1^4+Y1^4))
X3 = X1
Y3 = Y1